Concept explainers
The ionization energy of an atom can be measured by photo electron spectroscopy, in which light of wavelength
(a) What is the ionization energy of rubidium atoms in kilojoules per mole if light with
(b) What is the ionization energy of potassium in kilojoulesper mole if light with
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- Cesium was discovered in natural mineral waters in 1860 by R. W. Bunsen and G. R. Kirchhoff, using the spectroscope they invented in 1859. The name came from the Latin caesius ("sky blue") because of the prominent blue line observed for this element at 455.5 nm. Calculate the frequency and energy of a photon of this light.arrow_forwardSpectroscopists have observed He+ in outer space. This ion is a one-electron species like a neutral hydrogen atom. Calculate the energy of the photon emitted for the transition from the n = 5 to the n = 3 state in this ion using the equation: En = − Z2/n2 (2.179 × 10−18 J). Z is the positive charge of the nucleus and n is the principal quantum number. In what part of the electromagnetic spectrum does this radiation lie?arrow_forwardA photoemissive material has a threshold energy, Emin = 5 1019 J. Will 300. nm radiation eject electrons from the material? Explain.arrow_forward
- The ionization energy of rubidium is 403 kJ/mol. Do x-rays with a wavelength of 85 nm have sufficient energy to ionize rubidium?arrow_forwardLight with a wavelength of 405 nm fell on a strontium surface, and electrons were ejected. If the speed of an ejected electron is 3.36 105 m/s, what energy was expended in removing the electron from the metal? Express the answer in joules (per electron) and in kilojoules per mole (of electrons).arrow_forward6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forward
- The electron affinity of the lutetium atom (element 71) was measured using the technique of photoelectron spectroscopy with an infrared laser (the essay on p. 310 describes this instrumental method, using X rays). In this experiment, a beam of lutetium negative ions, Lu, was prepared and irradiated with a laser beam having a wavelength at 1064 nm. The energy supplied by a photon in this laser beam removes an electron from a negative ion, leaving the neutral atom. The energy needed to remove the electron from the negative ion to give the neutral atom (both in their ground states) is the electron affinity of lutetium. Any excess energy of the photon shows up as kinetic energy of the emitted electron. If the emitted electron in this experiment has a kinetic energy of 0.825 eV, what is the electron affinity of lutetium?arrow_forwardWhat is the radius, in angstroms, of the orbital of an electron with n = 8 in a hydrogen atom?arrow_forwardDoes the main emission line for SrCl2 have a longer or shorter wavelength than that of the yellow line from NaCI?arrow_forward
- • identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardGive the ground-state electron configurations of the following elements: (a) P (b) Tc (c) Hoarrow_forwardA bright violet line occurs at 435.8 nm in the emission spectrum of mercury vapor. What amount of energy, in joules, must be released by an electron in a mercury atom to produce a photon of this light?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning