
Concept explainers
(a)
Interpretation:
Appropriate products are to be drawn for the given proton transfer reaction with curved arrow notation.
Concept introduction:
In a proton transfer reaction, a proton is transferred from a Bronsted-Lowry acid to a Bronsted-Lowry base in a single elementary step in which one bond is broken and another is formed simultaneously. The curved arrow notation shows the movement of valence electrons, not atoms. The movement of two valence electrons is shown by curved arrow. To represent bond breaking, the tail of the arrow originates from the center of a bond whereas to represent bond formation, the head of arrow points to an atom which forms the new bond, that is, bond or the region where the bond is formed if the new bond is a
bond. The conjugate acid is the species that the base becomes after gaining a proton, and the conjugate base is the species that the acid becomes after losing a proton.

Answer to Problem 6.38P
For the given proton transfer reaction, the products are as shown below.
Explanation of Solution
The curved arrow notation for the given proton transfer reaction is shown below:
In a proton transfer reaction, a proton is transferred from the Bronsted-Lowry acid to the Bronsted-Lowry base. The movement of two valence electrons is shown by curved arrow. The head of the arrow pointing to the atom shows the transfer of valence electrons to form a new single bond. In the above reaction, one curved arrow is drawn from the lone pair on O to the H on the other reactant, so it illustrates the formation of a new
The products of the given proton transfer reaction are drawn on the basis of the curved arrow notation that shows breaking and formation of bonds.
(b)
Interpretation:
Appropriate products are to be drawn for the given proton transfer reaction with curved arrow notation.
Concept introduction:
In a proton transfer reaction, a proton is transferred from a Bronsted-Lowry acid to a Bronsted-Lowry base in a single elementary step in which one bond is broken and another is formed simultaneously. The curved arrow notation shows the movement of valence electrons, not atoms. The movement of two valence electrons is shown by curved arrow. To represent bond breaking, the tail of the arrow originates from the center of a bond whereas to represent bond formation, the head of arrow points to an atom which forms the new bond, that is, bond or the region where the bond is formed if the new bond is a
bond. The conjugate acid is the species that the base becomes after gaining a proton, and the conjugate base is the species that the acid becomes after losing a proton.

Answer to Problem 6.38P
For the given proton transfer reaction the products are drawn as below.
Explanation of Solution
The curved arrow notation for the given proton transfer reaction is shown below:
In a proton transfer reaction, a proton is transferred from the Bronsted-Lowry acid to the Bronsted-Lowry base. The movement of two valence electrons is shown by curved arrow. The head of the arrow pointing to atom shows the transfer of valence electrons to form a new single bond. In the above reaction, one curved arrow is drawn from the lone pair on H to the H of the first reactant, so it illustrates the formation of a new
The products of the given proton transfer reaction are drawn on the basis of the curved arrow notation that shows breaking and formation of bonds.
(c)
Interpretation:
Appropriate products are to be drawn for the given proton transfer reaction with curved arrow notation.
Concept introduction:
In a proton transfer reaction, a proton is transferred from a Bronsted-Lowry acid to a Bronsted-Lowry base in a single elementary step in which one bond is broken and another is formed simultaneously. The curved arrow notation shows the movement of valence electrons, not atoms. The movement of two valence electrons is shown by curved arrow. To represent bond breaking, the tail of the arrow originates from the center of a bond whereas to represent bond formation, the head of arrow points to an atom which forms the new bond, that is, bond or the region where the bond is formed if the new bond is a
bond. The conjugate acid is the species that the base becomes after gaining a proton, and the conjugate base is the species that the acid becomes after losing a proton.

Answer to Problem 6.38P
For the given proton transfer reaction, the products are drawn as below.
Explanation of Solution
The curved arrow notation for the given proton transfer reaction is shown below:
In a proton transfer reaction, a proton is transferred from the Bronsted-Lowry acid to the Bronsted-Lowry base. The movement of two valence electrons is shown by curved arrow. The head of the arrow pointing to an atom shows the transfer of valence electrons to form a new single bond. In the above reaction, one curved arrow is drawn from the lone pair on N to the H of the second reactant, so it illustrates the formation of a new
The products of the given proton transfer reaction are drawn on the basis of the curved arrow notation that shows breaking and formation of bonds.
(d)
Interpretation:
Appropriate products are to be drawn for the given proton transfer reaction with curved arrow notation.
Concept introduction:
In a proton transfer reaction, a proton is transferred from a Bronsted-Lowry acid to a Bronsted-Lowry base in a single elementary step in which one bond is broken and another is formed simultaneously. The curved arrow notation shows the movement of valence electrons, not atoms. The movement of two valence electrons is shown by curved arrow. To represent bond breaking, the tail of the arrow originates from the center of a bond whereas to represent bond formation, the head of arrow points to an atom which forms the new bond, that is, bond or the region where the bond is formed if the new bond is a
bond. The conjugate acid is the species that the base becomes after gaining a proton, and the conjugate base is the species that the acid becomes after losing a proton.

Answer to Problem 6.38P
For the given proton transfer reaction, the products are drawn as below.
Explanation of Solution
The curved arrow notation for the given proton transfer reaction are shown below:
In a proton transfer reaction, a proton is transferred from the Bronsted-Lowry acid to the Bronsted-Lowry base. The movement of two valence electrons is shown by curved arrow. The head of the arrow pointing to an atom shows the transfer of valence electrons to form a new single bond. In the above reaction, one curved arrow is drawn from the lone pair on O to the H of the first reactant, so it illustrates the formation of a new
The products of the given proton transfer reaction are drawn on the basis of the curved arrow notation that shows breaking and formation of bonds.
Want to see more full solutions like this?
Chapter 6 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- Draw the major product of this reaction. Ignore inorganic byproducts. ○ O 1. H₂O, pyridine 2. neutralizing work-up a N W X 人 Parrow_forward✓ Check the box under each molecule that has a total of five ẞ hydrogens. If none of the molecules fit this description, check the box underneath the table. tab OH CI 0 Br xx Br None of these molecules have a total of five ẞ hydrogens. esc Explanation Check caps lock shift 1 fn control 02 F2 W Q A N #3 S 80 F3 E $ t 01 205 % 5 F5 & 7 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility FT * 8 R T Y U כ F6 9 FIG F11 F D G H J K L C X V B < N M H option command P H + F12 commandarrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts and the carboxylic acid side product. O 1. CHзMgBr (excess) 2. H₂O ✓ W X 人arrow_forward
- If cyclopentyl acetaldehyde reacts with NaOH, state the product (formula).arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. N S S HgCl2, H2SO4 く 8 W X Parrow_forwardtab esc く Drawing the After running various experiments, you determine that the mechanism for the following reaction occurs in a step-wise fashion. Br + OH + Using this information, draw the correct mechanism in the space below. 1 Explanation Check F2 F1 @2 Q W A os lock control option T S # 3 80 F3 Br $ 4 0105 % OH2 + Br Add/Remove step X C F5 F6 6 R E T Y 29 & 7 F D G H Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce A F7 DII F8 C Ո 8 * 9 4 F10 F C J K L C V Z X B N M H command P ge Coarrow_forward
- Indicate compound A that must react with ethylbenzene to obtain 4-ethylbenzene-1-sulfonic acid. 3-bromo-4-ethylbenzene-1-sulfonic acid.arrow_forwardPart 1 of 2 Draw the structure of A, the minor E1 product of the reaction. esc I Skip Part Check H₂O, D 2 A + Click and drag to start drawing a structure. -0- F1 F2 1 2 # 3 Q A 80 F3 W E S D F4 $ 4 % 5 F5 ㅇ F6 R T Y F G X 5 & 7 + Save 2025 McGraw Hill LLC. All Rights Reserved. DII F7 F8 H * C 80 J Z X C V B N 4 F9 6arrow_forwardFile Preview The following is a total synthesis of the pheromone of the western pine beetle. Such syntheses are interesting both because of the organic chemistry, and because of the possibility of using species specific insecticides, rather than broad band insecticides. Provide the reagents for each step. There is some chemistry from our most recent chapter in this synthesis, but other steps are review from earlier chapters. (8 points) COOEt COOEt A C COOEt COOEt COOH B OH OTS CN D E See the last homework set F for assistance on this one. H+, H₂O G OH OH The last step is just nucleophilic addition reactions, taking the ketone to an acetal, intramolecularly. But it is hard to visualize the three dimensional shape as it occurs. Frontalin, pheromone of the western pine beetlearrow_forward
- For the reaction below: 1. Draw all reasonable elimination products to the right of the arrow. 2. In the box below the reaction, redraw any product you expect to be a major product. C Major Product: Check + ◎ + X ง © Cl I F2 80 F3 I σ F4 I F5 NaOH Click and drawing F6 A 2025 McGraw Hill LLC. All Rights E F7 F8 $ # % & 2 3 4 5 6 7 8 Q W E R T Y U A S D F G H Jarrow_forwardCan I please get help with this graph. If you can show exactly where it needs to pass through.arrow_forwardN Draw the major product of this reaction. Ignore inorganic byproducts. D 1. H₂O, pyridine 2. neutralizing work-up V P W X DE CO e C Larrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
