
Concept explainers
(a)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The second species has negative charge whereas the first species is uncharged. A negatively charged species is less stable than the uncharged species; hence the negatively charged species is more basic than the uncharged species. Therefore, the stronger base in given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(b)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species is neutral, and the second is positively charged. The neutral species can easily abstract protons as it has two lone pairs whereas the second species has no lone pair to abstract a proton. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(c)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
In the first species, the negative charge is on the
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(d)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species has an oxygen atom and second species has an N atom. The nitrogen atom is less electronegative than oxygen and can easily donate a lone pair. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(e)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species has a negatively charged nitrogen atom whereas the second species has a negatively charged P atom. The phosphorus atom is less electronegative than nitrogen. The species having a negative charge on less electronegative atom is more basic. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(f)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species is more stable due to resonance; it shows the delocalization of the negative charge and makes the species more acidic, whereas, the second species does not show the resonance effect, making it more basic than the first species. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(g)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species is more stable due to resonance; it shows the delocalization of the negative charge and makes the species more acidic, whereas the second species does not show resonance effect, making it more basic than the first species. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(h)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
Both the species have the resonance effect but presence of five electronegative F atoms in the second species makes it more stable and therefore more acidic than the first species. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(i)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The negative charge on the first species is in complete conjugation, making it more stable and increasing the acidity. The negative charge on the second species shows conjugation, but there is no
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
Want to see more full solutions like this?
Chapter 6 Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- Calculate the reaction rate for selenious acid, H2SeO3, if 0.1150 M I-1 decreases to 0.0770 M in 12.0 minutes. H2SeO3(aq) + 6I-1(aq) + 4H+1(aq) ⟶ Se(s) + 2I3-1(aq) + 3H2O(l)arrow_forwardProblem 5-31 Which of the following objects are chiral? (a) A basketball (d) A golf club (b) A fork (c) A wine glass (e) A spiral staircase (f) A snowflake Problem 5-32 Which of the following compounds are chiral? Draw them, and label the chirality centers. (a) 2,4-Dimethylheptane (b) 5-Ethyl-3,3-dimethylheptane (c) cis-1,4-Dichlorocyclohexane Problem 5-33 Draw chiral molecules that meet the following descriptions: (a) A chloroalkane, C5H11Cl (c) An alkene, C6H12 (b) An alcohol, C6H140 (d) An alkane, C8H18 Problem 5-36 Erythronolide B is the biological precursor of erythromycin, a broad-spectrum antibiotic. How H3C CH3 many chirality centers does erythronolide B have? OH Identify them. H3C -CH3 OH Erythronolide B H3C. H3C. OH OH CH3arrow_forwardPLEASE HELP! URGENT! PLEASE RESPOND!arrow_forward
- 2. Propose a mechanism for this reaction. ہلی سے ملی N H (excess)arrow_forwardSteps and explanationn please.arrow_forwardProblem 5-48 Assign R or S configurations to the chirality centers in ascorbic acid (vitamin C). OH H OH HO CH2OH Ascorbic acid O H Problem 5-49 Assign R or S stereochemistry to the chirality centers in the following Newman projections: H Cl H CH3 H3C. OH H3C (a) H H H3C (b) CH3 H Problem 5-52 Draw the meso form of each of the following molecules, and indicate the plane of symmetry in each: OH OH (a) CH3CHCH2CH2CHCH3 CH3 H3C. -OH (c) H3C CH3 (b) Problem 5-66 Assign R or S configurations to the chiral centers in cephalexin, trade-named Keflex, the most widely prescribed antibiotic in the United States. H2N H IHH S Cephalexin N. CH3 CO₂Harrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning


