Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 51RQ
To determine
The three primary families of stainless steels based on microstructures.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
100
As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the
spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a
damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is
subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in
a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement:
• Analytically (hand calculations)
Creating Simulink Model
Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph
for the first 15 sec. The graph must be fully formatted by code.
Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set
in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its
equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and
k₂ = 2 N/m.
(y₁ = 0)
www
k₁ = 3
Jm₁ = 1
k2=2
www
(Net change in
spring length
=32-31)
(y₂ = 0)
m₂ = 1
32
32
System in
static
equilibrium
System in
motion
Figure Q3 - Coupled mass-spring system
Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Produce an animation of the system for all solutions for the first minute.
Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank
A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each
tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of
6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If,
initially, tank A contains pure water and tank B contains 20 kg of salt.
A
6 L/min
0.2 kg/L
x(t)
100 L
4 L/min
x(0) = 0 kg
3 L/min
1 L/min
B
y(t)
100 L
y(0) = 20 kg
2 L/min
Figure Q1 - Mixing problem for interconnected tanks
Determine the mass of salt in each tank at time t≥ 0:
Analytically (hand calculations)
Using MATLAB Numerical Functions (ode45)
Creating Simulink Model
Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.
Chapter 6 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 6 - Why might it be important to know the prior...Ch. 6 - What is a ferrous material?Ch. 6 - How does the amount of steel that is recycled...Ch. 6 - Why is the recycling of steel so attractive...Ch. 6 - When iron ore is reduced to metallic iron, what...Ch. 6 - What properties or characteristics have made steel...Ch. 6 - What is involved in the conversion of pig iron...Ch. 6 - What are some of the modification processes that...Ch. 6 - What is the advantage of pouring molten metal from...Ch. 6 - What are some of the attractive economic and...
Ch. 6 - Prob. 11RQCh. 6 - What are some of the techniques used to reduce the...Ch. 6 - How might other gases, such as nitrogen and...Ch. 6 - What are some of the attractive features of...Ch. 6 - What is plain�carbon steel?Ch. 6 - What is considered a low�carbon steel?...Ch. 6 - What properties account for the high�volume use...Ch. 6 - Why should plain�carbon steels be given first...Ch. 6 - What are some of the common alloy elements added...Ch. 6 - For what different reasons might alloying elements...Ch. 6 - What are some of the alloy elements that tend to...Ch. 6 - While strength and hardness are dependent on the...Ch. 6 - What alloys are particularly effective in...Ch. 6 - What is the basis of the AISI–SAE classification...Ch. 6 - What is the significance of the last two digits in...Ch. 6 - How are letters incorporated into the AISI–SAE...Ch. 6 - What is an H�grade steel, and when should it be...Ch. 6 - Why should the proposed fabrication processes...Ch. 6 - How are the final properties usually obtained in...Ch. 6 - Prob. 30RQCh. 6 - Prob. 31RQCh. 6 - Prob. 32RQCh. 6 - What is the primary attraction of the...Ch. 6 - Prob. 34RQCh. 6 - What are the two phases that are present in...Ch. 6 - What is the transformation that occurs during the...Ch. 6 - Prob. 37RQCh. 6 - Prob. 38RQCh. 6 - Prob. 39RQCh. 6 - Describe the role of steel in the automotive...Ch. 6 - Prob. 41RQCh. 6 - Prob. 42RQCh. 6 - What are some of the compromises associated with...Ch. 6 - What factors might be used to justify the added...Ch. 6 - What are some of the coating materials that have...Ch. 6 - What are soft magnetic materials?Ch. 6 - Prob. 47RQCh. 6 - What are maraging steels, and for what conditions...Ch. 6 - Prob. 49RQCh. 6 - Prob. 50RQCh. 6 - Prob. 51RQCh. 6 - Why should ferritic stainless steels be given...Ch. 6 - Which of the major types of stainless steel is...Ch. 6 - Under what conditions might a martensitic...Ch. 6 - Prob. 55RQCh. 6 - How can an austenitic stainless steel be easily...Ch. 6 - Prob. 57RQCh. 6 - Prob. 58RQCh. 6 - Prob. 59RQCh. 6 - Prob. 60RQCh. 6 - What is a tool steel?Ch. 6 - How does the AISI–SAE designation system for...Ch. 6 - What is the least expensive variety of tool steel?Ch. 6 - Prob. 64RQCh. 6 - What alloying elements are used to produce the...Ch. 6 - What assets can be provided by the...Ch. 6 - Prob. 67RQCh. 6 - Prob. 68RQCh. 6 - Describe the microstructure of gray cast iron.Ch. 6 - Which of the structural units is generally altered...Ch. 6 - What are some of the attractive engineering...Ch. 6 - What are some of the key limitations to the...Ch. 6 - Prob. 73RQCh. 6 - How is malleable cast iron produced?Ch. 6 - What structural feature is responsible for the...Ch. 6 - Prob. 76RQCh. 6 - What is the purpose of inoculation when making...Ch. 6 - What is fading? Why should ductile iron be...Ch. 6 - What requirements of ductile iron manufacture are...Ch. 6 - What are some of the attractive features of...Ch. 6 - Compacted graphite iron has a structure and...Ch. 6 - What are some of the reasons that alloy additions...Ch. 6 - What properties are enhanced in the high�alloy...Ch. 6 - When should cast steel be used instead of a cast...Ch. 6 - In what ways might a cast steel be more difficult...Ch. 6 - Why are standard geometry test bars often cast...Ch. 6 - Prob. 1PCh. 6 - Select from among the common hand tools in the...Ch. 6 - Prob. 3PCh. 6 - Identify a particular product that has been...Ch. 6 - Prob. 5PCh. 6 - Select among the components in the following list,...Ch. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Surface Treatment—Depending on the material...
Knowledge Booster
Similar questions
- 5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forwardDescribe the following HVAC systems. a) All-air systems b) All-water systems c) Air-water systems Graphically represent each system with a sketch.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward
- ased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardThe answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forwardI need expert handwritten solutions to this onlyarrow_forward
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forward
- this is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forwardPlease answer with the sketches.arrow_forwardThe beam is made of elastic perfectly plastic material. Determine the shape factor for the cross section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²] y 25 mm 75 mm I 25 mm 200 mm 25 mm 125 Figure Q3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning