
Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 2CS
(a)
To determine
The reason for cold working and surface finish in wire.
(b)
To determine
The acceptable condition for the final product.
(c)
To determine
The concern about the shear ends.
(d)
To determine
The heat treatment required for final properties.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The 2-mass system shown below depicts a disk which rotates about its center and has rotational
moment of inertia Jo and radius r. The angular displacement of the disk is given by 0. The spring
with constant k₂ is attached to the disk at a distance from the center. The mass m has linear
displacement & and is subject to an external force u. When the system is at equilibrium, the spring
forces due to k₁ and k₂ are zero. Neglect gravity and aerodynamic drag in this problem. You may
assume the small angle approximation which implies (i) that the springs and dampers remain in
their horizontal / vertical configurations and (ii) that the linear displacement d of a point on the
edge of the disk can be approximated by d≈re.
Ө
K2
www
m
4
Cz
777777
Jo
Make the following assumptions when analyzing the forces and torques:
тв
2
0>0, 0>0, x> > 0, >0
Derive the differential equations of motion for this dynamic system. Start by sketching
LARGE and carefully drawn free-body-diagrams for the disk and the…
A linear system is one that satisfies the principle of superposition. In other words, if an input u₁
yields the output y₁, and an input u2 yields the output y2, the system is said to be linear if a com-
bination of the inputs u = u₁ + u2 yield the sum of the outputs y = y1 + y2.
Using this fact, determine the output y(t) of the following linear system:
given the input:
P(s) =
=
Y(s)
U(s)
=
s+1
s+10
u(t) = e−2+ sin(t)
=e
The manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.
Chapter 6 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 6 - Why might it be important to know the prior...Ch. 6 - What is a ferrous material?Ch. 6 - How does the amount of steel that is recycled...Ch. 6 - Why is the recycling of steel so attractive...Ch. 6 - When iron ore is reduced to metallic iron, what...Ch. 6 - What properties or characteristics have made steel...Ch. 6 - What is involved in the conversion of pig iron...Ch. 6 - What are some of the modification processes that...Ch. 6 - What is the advantage of pouring molten metal from...Ch. 6 - What are some of the attractive economic and...
Ch. 6 - Prob. 11RQCh. 6 - What are some of the techniques used to reduce the...Ch. 6 - How might other gases, such as nitrogen and...Ch. 6 - What are some of the attractive features of...Ch. 6 - What is plain�carbon steel?Ch. 6 - What is considered a low�carbon steel?...Ch. 6 - What properties account for the high�volume use...Ch. 6 - Why should plain�carbon steels be given first...Ch. 6 - What are some of the common alloy elements added...Ch. 6 - For what different reasons might alloying elements...Ch. 6 - What are some of the alloy elements that tend to...Ch. 6 - While strength and hardness are dependent on the...Ch. 6 - What alloys are particularly effective in...Ch. 6 - What is the basis of the AISI–SAE classification...Ch. 6 - What is the significance of the last two digits in...Ch. 6 - How are letters incorporated into the AISI–SAE...Ch. 6 - What is an H�grade steel, and when should it be...Ch. 6 - Why should the proposed fabrication processes...Ch. 6 - How are the final properties usually obtained in...Ch. 6 - Prob. 30RQCh. 6 - Prob. 31RQCh. 6 - Prob. 32RQCh. 6 - What is the primary attraction of the...Ch. 6 - Prob. 34RQCh. 6 - What are the two phases that are present in...Ch. 6 - What is the transformation that occurs during the...Ch. 6 - Prob. 37RQCh. 6 - Prob. 38RQCh. 6 - Prob. 39RQCh. 6 - Describe the role of steel in the automotive...Ch. 6 - Prob. 41RQCh. 6 - Prob. 42RQCh. 6 - What are some of the compromises associated with...Ch. 6 - What factors might be used to justify the added...Ch. 6 - What are some of the coating materials that have...Ch. 6 - What are soft magnetic materials?Ch. 6 - Prob. 47RQCh. 6 - What are maraging steels, and for what conditions...Ch. 6 - Prob. 49RQCh. 6 - Prob. 50RQCh. 6 - Prob. 51RQCh. 6 - Why should ferritic stainless steels be given...Ch. 6 - Which of the major types of stainless steel is...Ch. 6 - Under what conditions might a martensitic...Ch. 6 - Prob. 55RQCh. 6 - How can an austenitic stainless steel be easily...Ch. 6 - Prob. 57RQCh. 6 - Prob. 58RQCh. 6 - Prob. 59RQCh. 6 - Prob. 60RQCh. 6 - What is a tool steel?Ch. 6 - How does the AISI–SAE designation system for...Ch. 6 - What is the least expensive variety of tool steel?Ch. 6 - Prob. 64RQCh. 6 - What alloying elements are used to produce the...Ch. 6 - What assets can be provided by the...Ch. 6 - Prob. 67RQCh. 6 - Prob. 68RQCh. 6 - Describe the microstructure of gray cast iron.Ch. 6 - Which of the structural units is generally altered...Ch. 6 - What are some of the attractive engineering...Ch. 6 - What are some of the key limitations to the...Ch. 6 - Prob. 73RQCh. 6 - How is malleable cast iron produced?Ch. 6 - What structural feature is responsible for the...Ch. 6 - Prob. 76RQCh. 6 - What is the purpose of inoculation when making...Ch. 6 - What is fading? Why should ductile iron be...Ch. 6 - What requirements of ductile iron manufacture are...Ch. 6 - What are some of the attractive features of...Ch. 6 - Compacted graphite iron has a structure and...Ch. 6 - What are some of the reasons that alloy additions...Ch. 6 - What properties are enhanced in the high�alloy...Ch. 6 - When should cast steel be used instead of a cast...Ch. 6 - In what ways might a cast steel be more difficult...Ch. 6 - Why are standard geometry test bars often cast...Ch. 6 - Prob. 1PCh. 6 - Select from among the common hand tools in the...Ch. 6 - Prob. 3PCh. 6 - Identify a particular product that has been...Ch. 6 - Prob. 5PCh. 6 - Select among the components in the following list,...Ch. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Surface Treatment—Depending on the material...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Using the Bernoulli equation to find the general solution. If an initial condition is given, find the particular solution. y' + xy = xy¯¹, y(0) = 3arrow_forwardTest for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forwardNewton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forward
- Solve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward= MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward= MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forward
- The population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward= MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward
- 5.112 A mounting bracket for electronic components is formed from sheet metal with a uniform thickness. Locate the center of gravity of the bracket. 0.75 in. 3 in. ༧ Fig. P5.112 1.25 in. 0.75 in. y r = 0.625 in. 2.5 in. 1 in. 6 in. xarrow_forward4-105. Replace the force system acting on the beam by an equivalent resultant force and couple moment at point B. A 30 in. 4 in. 12 in. 16 in. B 30% 3 in. 10 in. 250 lb 260 lb 13 5 12 300 lbarrow_forwardSketch and Describe a hatch coaming and show how the hatch coamings are framed in to ships strucure?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning