a)
To find: the polar form of
The polar form of
Given information:
Given
Formula used:
De Moivre’s Theorem:
Let
Calculation:
Substitute 3 for
Thus,
b)
To find: the standard form expression of
The standard form of the complex number
Given information:
Given complex number:
From part (a), the polar form of
Formula used:
Polar form to Standard form of complex number:
If polar form a complex number
Calculation:
Compare given complex number
Standard form of complex number:
The standard form of
computed as follows:
Substitute the values
Thus, the standard form of the complex number
Chapter 6 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning