(3) (20 points) Let F(x, y, z) = (y, z, x²z). Define E = {(x, y, z) | x² + y² ≤ z ≤ 1, x ≤ 0}. (a) (2 points) Calculate the divergence V. F. (b) (4 points) Let D = {(x, y) | x² + y² ≤ 1, x ≤ 0} Without calculation, show that the triple integral √ (V · F) dV = √ 2²(1. = x²(1 − x² - y²) dA. E (c) (2 points) Describe the points (x, y) E D using polar coordinates. - - (d) (8 points) Calculate the integral √x²(1 − x² – y²) dA using polar coordinates.
(3) (20 points) Let F(x, y, z) = (y, z, x²z). Define E = {(x, y, z) | x² + y² ≤ z ≤ 1, x ≤ 0}. (a) (2 points) Calculate the divergence V. F. (b) (4 points) Let D = {(x, y) | x² + y² ≤ 1, x ≤ 0} Without calculation, show that the triple integral √ (V · F) dV = √ 2²(1. = x²(1 − x² - y²) dA. E (c) (2 points) Describe the points (x, y) E D using polar coordinates. - - (d) (8 points) Calculate the integral √x²(1 − x² – y²) dA using polar coordinates.
Chapter3: Functions
Section3.3: Rates Of Change And Behavior Of Graphs
Problem 2SE: If a functionfis increasing on (a,b) and decreasing on (b,c) , then what can be said about the local...
Related questions
Question

Transcribed Image Text:(3) (20 points) Let F(x, y, z) = (y, z, x²z). Define
E = {(x, y, z) | x² + y² ≤ z ≤ 1, x ≤ 0}.
(a) (2 points) Calculate the divergence V. F.
(b) (4 points) Let D = {(x, y) | x² + y² ≤ 1, x ≤ 0} Without calculation, show that
the triple integral
√ (V · F) dV = √ 2²(1.
= x²(1 − x² - y²) dA.
E

Transcribed Image Text:(c) (2 points) Describe the points (x, y) E D using polar coordinates.
-
-
(d) (8 points) Calculate the integral √x²(1 − x² – y²) dA using polar coordinates.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images

Recommended textbooks for you


College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning


College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning