1 Given the Jordan curve y that is the counterclockwise oriented boundary of the set T= {z C |+1| = 1/2}, the complex line integral 1 √√√ ²(= + 1) (2 + 1 − 1) dz takes value 8πί (A) 3 128πί 15-8i -8πί 8π(1+81) 15-8i z² (z+1) (2+1 - 1/4) 2=0→> double pole → 10+11 > 1/2 → → outside z = -1 → single pole →1-1+1|< 1/2 inside single pole →1-1+1 +11 < 1/2 → inside z = -1+4 + lim (2+1). Z→-1 + 1 = 4i-8π 1(-114) + + lim 2-1+1/4 (211-114) z² (z+1) (2+1 1/4) (-1+1/4)² (-1+1/4++) (1/15 - 11/21) (1/4) 321Ti (15-81) (1/4)
1 Given the Jordan curve y that is the counterclockwise oriented boundary of the set T= {z C |+1| = 1/2}, the complex line integral 1 √√√ ²(= + 1) (2 + 1 − 1) dz takes value 8πί (A) 3 128πί 15-8i -8πί 8π(1+81) 15-8i z² (z+1) (2+1 - 1/4) 2=0→> double pole → 10+11 > 1/2 → → outside z = -1 → single pole →1-1+1|< 1/2 inside single pole →1-1+1 +11 < 1/2 → inside z = -1+4 + lim (2+1). Z→-1 + 1 = 4i-8π 1(-114) + + lim 2-1+1/4 (211-114) z² (z+1) (2+1 1/4) (-1+1/4)² (-1+1/4++) (1/15 - 11/21) (1/4) 321Ti (15-81) (1/4)
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter11: Topics From Analytic Geometry
Section: Chapter Questions
Problem 12RE
Related questions
Question
i circled the correct answer and i did most of the question but i cant figure out how to add both residues to get the correct answer
could you please show me how to do it
![1 Given the Jordan curve y that is the counterclockwise oriented boundary of the set
T= {z C |+1| = 1/2}, the complex line integral
1
√√√ ²(= + 1) (2 + 1 − 1) dz
takes value
8πί
(A)
3
128πί
15-8i
-8πί
8π(1+81)
15-8i
z² (z+1) (2+1 - 1/4)
2=0→> double pole
→ 10+11 > 1/2 →
→ outside
z = -1 → single pole →1-1+1|< 1/2 inside
single pole →1-1+1 +11 < 1/2 → inside
z =
-1+4
+
lim (2+1).
Z→-1
+
1
= 4i-8π
1(-114)
+
+
lim
2-1+1/4
(211-114)
z² (z+1) (2+1 1/4)
(-1+1/4)² (-1+1/4++)
(1/15 - 11/21) (1/4)
321Ti
(15-81) (1/4)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6099d21a-e15a-47f8-adbb-0c871c33581f%2F7286733d-df39-4c8a-bd11-0cd302922612%2F8lt2kp_processed.png&w=3840&q=75)
Transcribed Image Text:1 Given the Jordan curve y that is the counterclockwise oriented boundary of the set
T= {z C |+1| = 1/2}, the complex line integral
1
√√√ ²(= + 1) (2 + 1 − 1) dz
takes value
8πί
(A)
3
128πί
15-8i
-8πί
8π(1+81)
15-8i
z² (z+1) (2+1 - 1/4)
2=0→> double pole
→ 10+11 > 1/2 →
→ outside
z = -1 → single pole →1-1+1|< 1/2 inside
single pole →1-1+1 +11 < 1/2 → inside
z =
-1+4
+
lim (2+1).
Z→-1
+
1
= 4i-8π
1(-114)
+
+
lim
2-1+1/4
(211-114)
z² (z+1) (2+1 1/4)
(-1+1/4)² (-1+1/4++)
(1/15 - 11/21) (1/4)
321Ti
(15-81) (1/4)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage