Ethanol, C 2 H 5 OH , is used as a fuel for motor vehicles, particularly in Brazil. (a) Write the balanced equation for the combustion of ethanol to CO 2 ( g ) and H 2 O ( g ) , and, using the data in Appendix G, calculate the enthalpy of combustion of 1 mole of ethanol. (b) The density of ethanol is 0.7893 g/mL. Calculate the enthalpy of combustion of exactly 1 L of ethanol. (c) Assuming that an automobile’s mileage is directly proportional to the heat of combustion of the fuel, calculate how much farther an automobile could be expected to travel on 1 L of gasoline than on 1 L of ethanol. Assume that gasoline has the heat of combustion and the density of n—octane, C 8 H 18 ( Δ H f ° = − 208.4 kJ/mol; density = 0.7025 g/mL ) .
Ethanol, C 2 H 5 OH , is used as a fuel for motor vehicles, particularly in Brazil. (a) Write the balanced equation for the combustion of ethanol to CO 2 ( g ) and H 2 O ( g ) , and, using the data in Appendix G, calculate the enthalpy of combustion of 1 mole of ethanol. (b) The density of ethanol is 0.7893 g/mL. Calculate the enthalpy of combustion of exactly 1 L of ethanol. (c) Assuming that an automobile’s mileage is directly proportional to the heat of combustion of the fuel, calculate how much farther an automobile could be expected to travel on 1 L of gasoline than on 1 L of ethanol. Assume that gasoline has the heat of combustion and the density of n—octane, C 8 H 18 ( Δ H f ° = − 208.4 kJ/mol; density = 0.7025 g/mL ) .
Ethanol,
C
2
H
5
OH
, is used as a fuel for motor vehicles, particularly in Brazil.
(a) Write the balanced equation for the combustion of ethanol to
CO
2
(
g
)
and
H
2
O
(
g
)
, and, using the data in Appendix G, calculate the enthalpy of combustion of 1 mole of ethanol.
(b) The density of ethanol is 0.7893 g/mL. Calculate the enthalpy of combustion of exactly 1 L of ethanol.
(c) Assuming that an automobile’s mileage is directly proportional to the heat of combustion of the fuel, calculate how much farther an automobile could be expected to travel on 1 L of gasoline than on 1 L of ethanol. Assume that gasoline has the heat of combustion and the density of n—octane,
C
8
H
18
(
Δ
H
f
°
=
−
208.4
kJ/mol; density
=
0.7025
g/mL
)
.
Consider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point
the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related
to the total force P by
dU
dx
= P
Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of
x = x, in terms of the potential energy?
0
P, Force
19
Attraction
Total
Repulsion
x, Distance
Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The
slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb,
corresponding to the peak in total force, is the theoretical cohesive strength.
Denote the dipole for the indicated bonds in the following molecules.
H3C
✓
CH3
B
F-CCl 3
Br-Cl
H3C Si(CH3)3
wwwwwww
OH
НО.
HO
HO
OH
vitamin C
CH3
For the SN2 reaction, draw the major organic product and select the correct (R) or (S) designation around the stereocenter
carbon in the organic substrate and organic product. Include wedge-and-dash bonds and draw hydrogen on a stereocenter.
Η
1
D
EN
Select Draw Templates More
C
H
D
N
Erase
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY