Steel Design (Activate Learning with these NEW titles from Engineering!)
Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
Question
Book Icon
Chapter 5, Problem 5.5.14P
To determine

(a)

Whether a MC18×58 is adequate or not, by using LRFD

Expert Solution
Check Mark

Answer to Problem 5.5.14P

Inadequate

Explanation of Solution

Given:

Fy = 36 ksi

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 5, Problem 5.5.14P , additional homework tip  1

Formula used:

Lp=1.76ryEFy

Lpis unbraced length in an inelastic behavior

c=h02IyCw

Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2

Lris unbraced length in an elastic behavior

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp

Mn is nominal moment strength

Mpis plastic moment capacity

Calculation:

All channel shapes in the Manual are compact.(There are no footnotes to indicate otherwise)

For an MC18×58,

A=17.1in.2d=18in.tf=0.625in.rts=1.35in.h0=17.4in.Sx=75in.3Zx=95.4in.3Iy=17.6in.4ry=1.02in.J=2.81in.4Cw=1070in.6

A is Cross-sectional area

Sxis Elastic section modulus about X -axis

Zxis Plastic section modulus about X -axis

Iyis Moment of inertia about Y -axis

ryis Radius of gyration about Y -axis

Syis Elastic section modulus about Y -axis

rts is IyCwSx

Cwis Warping constant

h0is Distance between centroid of flanges

J is Torsional moment of inertia

Lp=1.76ryEFy=1.76(1.02)2900036=50.95in.=4.25ft

For channels,

c=h02IyCw=17.4217.61070=1.116Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2=1.95(1.35)290000.7(36)2.81×1.11675×17.4+(2.81×1.11675×17.4)2+6.76(0.7(36)29000)2=228.747in.=19.06ft.

For Lb=14ft, Lp<Lb<Lr so

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

From the below given figure in the textbook, Cb=1.32

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 5, Problem 5.5.14P , additional homework tip  2

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

Mp=FyZx=36(95.4)=3434.4inkips=286.2ftkipsMn=1.32[3434.4(3434.40.7×36×75)(144.2519.064.25)]=1642.424inkips=136.87ftkips<MpϕbMn=0.90(136.87)=123.182ftkipsMu=wuL28+PuL4=1.2×0.058(14)28+1.6×30(14)4

=169.7ftkips>123.182ftkips (N.G.)

Conclusion:

MC18×58 is not adequate.

To determine

(b)

Whether a MC18×58 is adequate by usingASD

Expert Solution
Check Mark

Answer to Problem 5.5.14P

Inadequate

Explanation of Solution

Given:

Fy = 36 ksi

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 5, Problem 5.5.14P , additional homework tip  3

Formula used:

Lp=1.76ryEFy

c=h02IyCw

Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp

Mn is nominal moment strength

Mpis plastic moment capacity

Calculation:

All channel shapes in the Manual are compact. (There are no footnotes to indicate otherwise)

For an MC18×58,

A=17.1in.2d=18in.tf=0.625in.rts=1.35in.h0=17.4in.Sx=75in.3Zx=95.4in.3Iy=17.6in.4ry=1.02in.J=2.81in.4Cw=1070in.6

A is Cross-sectional area

Sxis Elastic section modulus about X -axis

Zxis Plastic section modulus about X -axis

Iyis Moment of inertia about Y -axis

ryis Radius of gyration about Y -axis

Syis Elastic section modulus about Y -axis

rts is IyCwSx

Cwis Warping constant

h0is Distance between centroid of flanges

J is Torsional moment of inertia

Lp=1.76ryEFy=1.76(1.02)2900036=50.95in.=4.25ft

For channels,

c=h02IyCw=17.4217.61070=1.116Lr=1.95rtsE0.7FyJcSxh0+(JcSxh0)2+6.76(0.7FyE)2=1.95(1.35)290000.7(36)2.81×1.11675×17.4+(2.81×1.11675×17.4)2+6.76(0.7(36)29000)2=228.747in.=19.06ft.

For Lb=14ft, Lp<Lb<Lr so

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

From the below given figure in the textbook, Cb=1.32

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 5, Problem 5.5.14P , additional homework tip  4

Mn=Cb[Mp(Mp0.7FySx)(LbLpLrLp)]Mp (Inelastic Lateral torsional buckling)

Mp=FyZx=36(95.4)=3434.4inkips=286.2ftkipsMn=1.32[3434.4(3434.40.7×36×75)(144.2519.064.25)]=1642.424inkips=136.87ftkips<MpMnΩb=136.871.67=81.96ftkipsMa=waL28+PaL4=0.058(14)28+30(14)4

=106.421ftkips>81.96ftkips

Conclusion:

MC18×58 is not adequate.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A) # of Disinfection Clearwells: 3 B) Clearwell Operation Style: Parallel (to provide contact time for disinfection using free chlorine (derived from a hypochlorite solution generated onsite). C) The facility's existing system to generate hypochlorite onsite has reached the end of its useful life, and the current operating capacity is insufficient to generate the required mass flow of hypochlorite to accommodate the future capacity of 34.5 MGD. Assume the facility plans to stop generating hypochlorite onsite and will instead purchase a bulk solution of sodium hypochlorite D) Sodium hypochlorite (NaOCI) concentration: 6.25% NaOCI by mass E) Bulk Density: 1,100 kg/m^3 F) Clearwell T10/DT Ratio: (CW1 0.43). (CW2 = 0.51), (CW3 = 0.58) DT is the theoretical mean hydraulic retention time (V/Q) G) pH: 7.0 H) Design Temperature: 15°C 1) 50% of Chlorine is lost in each clearwell J) If the concentration going into the clearwell is C, then you can assume that the concentration leaving the…
Please explain step by step, and show formula
Note: Please deliver a clear, step-by-step simplified handwritten solution (without any explanations) that is entirely manually produced without AI assistance. I expect an expert-level answer, and I will evaluate and rate it based on the quality and accuracy of the work, using the provided image for additional reference. Ensure every detail is thoroughly checked for correctness before submission.

Chapter 5 Solutions

Steel Design (Activate Learning with these NEW titles from Engineering!)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning