Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.5.12P
To determine
(a)
Maximum service live load, in kips/ft that can be supported by a W21X 68 of A992 steel using LFRD method.
To determine
(b)
Maximum service live load, in kips/ft that can be supported by a W21X 68 of A992 steel using ASD method.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A simply supported beam is subjected to a uniform service dead load of 1.0 kips/ft (including the weight of the beam) and uniform service live load of 2.5 kips/ft. The beam is 40 feet long, The beam has continuous lateral support, and A572 Grade 50 steel is used. A572 Grade 50 steel has Fy = 50 ksi and Fu = 65 ksi.
Is a W30 × 116 adequate from flexure and shear?Check both LRFD and ASD.
Is the beam adequate from deflection if it allowsmaximum deflection of L/360 (dead load + liveload)?
Use 2015 NSCP
A simply supported beam is subjected to a uniform service dead load of 1.0
kip/ft(including the weight of the beam) a uniform service live load of 2.0 kips/ft
and a concentrated service dead load of 40 kips. The beam is 40ft long and a
concentrated load is located 15 ft from the left end. The beam has continuous
lateral support and A36 steel is used. Is W30x108 adequate?
a) Use LRFD b) use ASD
P₁=40*
-15-
25'-
WD = 1.0km
W₁ = 2.0³m
W30 x 108
40'-
USE NSCP 2010
A rectangular beam reinforced for both tension and compression barshas an area of 1450 mm² for compression bars and 4350 mm² fortension bars. The tension bars and compression bars are placed at a distance of 600 mm and 62.5 mm respectively from the top of thebeam. The beam width 300 mm, fc’ = 21 MPa, fy = 415 MPa andtension steel covering is 60 mm.If it is 8 m-simply-supported beam that carries three concentratedservice live loads P applied at three quarter points of the beam (exceptat the supports), neglecting the self weight of the beam, determine themaximum value of service load P in kiloNewtons.
Chapter 5 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 5 - Prob. 5.2.1PCh. 5 - Prob. 5.2.2PCh. 5 - Verify the value of Zx for a W1850 that is...Ch. 5 - Prob. 5.2.4PCh. 5 - Prob. 5.4.1PCh. 5 - Prob. 5.4.2PCh. 5 - Determine the smallest value of yield stress Fy,...Ch. 5 - Prob. 5.5.1PCh. 5 - Prob. 5.5.2PCh. 5 - Prob. 5.5.3P
Ch. 5 - Prob. 5.5.4PCh. 5 - Prob. 5.5.5PCh. 5 - Prob. 5.5.6PCh. 5 - Prob. 5.5.7PCh. 5 - Prob. 5.5.8PCh. 5 - Prob. 5.5.9PCh. 5 - If the beam in Problem 5.5-9 i5 braced at A, B,...Ch. 5 - Prob. 5.5.11PCh. 5 - Prob. 5.5.12PCh. 5 - Prob. 5.5.13PCh. 5 - Prob. 5.5.14PCh. 5 - Prob. 5.5.15PCh. 5 - Prob. 5.5.16PCh. 5 - Prob. 5.6.1PCh. 5 - Prob. 5.6.2PCh. 5 - Prob. 5.6.3PCh. 5 - Prob. 5.6.4PCh. 5 - Compute the nominal shear strength of an M107.5 of...Ch. 5 - Compute the nominal shear strength of an M1211.8...Ch. 5 - Prob. 5.8.3PCh. 5 - Prob. 5.8.4PCh. 5 - Prob. 5.10.1PCh. 5 - Prob. 5.10.2PCh. 5 - Same as Problem 5.10-2, except that lateral...Ch. 5 - Prob. 5.10.4PCh. 5 - The given beam is laterally supported at the ends...Ch. 5 - Prob. 5.10.6PCh. 5 - Prob. 5.10.7PCh. 5 - Prob. 5.11.1PCh. 5 - Prob. 5.11.2PCh. 5 - Prob. 5.11.3PCh. 5 - Prob. 5.11.4PCh. 5 - Prob. 5.11.5PCh. 5 - Prob. 5.11.6PCh. 5 - Prob. 5.11.7PCh. 5 - Prob. 5.11.8PCh. 5 - Prob. 5.11.9PCh. 5 - Prob. 5.12.1PCh. 5 - Prob. 5.12.2PCh. 5 - Prob. 5.12.3PCh. 5 - Prob. 5.13.1PCh. 5 - Prob. 5.13.2PCh. 5 - Prob. 5.14.1PCh. 5 - Prob. 5.14.2PCh. 5 - Prob. 5.14.3PCh. 5 - Prob. 5.14.4PCh. 5 - Prob. 5.15.1PCh. 5 - Prob. 5.15.2PCh. 5 - Prob. 5.15.3PCh. 5 - Prob. 5.15.4PCh. 5 - Prob. 5.15.5PCh. 5 - Prob. 5.15.6PCh. 5 - Prob. 5.15.7PCh. 5 - Same as Problem 5.15-7, except that the sag rods...
Knowledge Booster
Similar questions
- ASSIGNMENT #5 BIAXIAL BENDING Problem: Check the beam shown for compliance with the NSCP Specification. Lateral support is provided only at the ends, and A992 steel is used, F, = 345 mPa. The 90 kN service loads are 30% dead load and 70% live load. a. Use LRFD b. Use ASD d tw by ty 1x(106) S(10³) mm mm mm mm³ mm mmª W410x100 415 10 260 16.9 398 1920 SECTION Tx mm 177 1m 90 kN 90 KN 1.5m W410x100 I Loaded Section Ly(106) Sy(10³) Ty mmª mm³ mm 49.5 381 62.4 1m Zx(10³) Zy(10³) mm³ mm³ 2130 581arrow_forwardA simply supported steel joist of 4 m effective span is laterally supported throughout. It carries a total UDL of 40 kN (inclusive of self weight). Design an appropriate section using steel of grade Fe410. The following two beam sections are available ISMB 150 @ 146 N/m ISMB 175 @ 191 N/m b₁ = tf = 8.6 mm t = 5.5 mm bf = 80 mm = 7.6 mm tf t = 4.8 mm 1₂=726.4 x 104 mmª = 96.9 x 103 mm³ 22 Z₂ R₁ Zp = 9 mm = 110.5 x 103 mm³ = 90 mm = 1272 × 104 mm² Izz Z = 145.4 x 10³ mm³ = 10 mm R₁ Z₁ = 166.1 x 10³ mm³arrow_forwardi need the answer quicklyarrow_forward
- The below figure represents a section of a pre- stressed beam. For a no-tension design where a is the permissible stress in concrete, the total moment carrying capacity is (a) (c) d/2 bd² 6 d/2 bd²oc 3 -b- (b) (d) bd² oc 4 bd²a 12arrow_forwardA plate girder must be designed for the conditions shown in Figure P10.7-4. The given loads are factored, and the uniformly distributed load includes a conservative estimate of the girder weight. Lateral support is provided at the ands and at the load points. Use LRFD for that following: a. Select the, flange and web dimensions so that intermediate stiffeners will he required. Use Fy=50 ksi and a total depth of 50 inches. Bearing stiffeners will be used at the ends and at the load points, but do not proportion them. b. Determine the locations of the intermediate stiffeners, but do not proportion them.arrow_forwardIf the beam in Problem 5.5-9 i5 braced at A, B, and C, compute for the unbr Cb aced length AC (same as Cb for unbraced length CB). Do not include the beam weight in the loading. a. Use the unfactored service loads. b. Use factored loads.arrow_forward
- A beam must be designed to the following specifications: Span length = 35 ft Beam spacing = 10 ft 2-in. deck with 3 in. of lightweight concrete fill (wc=115 pcf) for a total depth of t=5 in. Total weight of deck and slab = 51 psf Construction load = 20 psf Partition load = 20 psf Miscellaneous dead load = 10 psf Live load = 80 psf Fy=50 ksi, fc=4 ksi Assume continuous lateral support and use LRFD. a. Design a noncomposite beam. Compute the total deflection (there is no limit to be checked). b. Design a composite beam and specify the size and number of stud anchors required. Assume one stud at each beam location. Compute the maximum total deflection as follows: 1. Use the transformed section. 2. Use the lower-bound moment of inertia.arrow_forwardDetermine the maximum axial compressive service load that can be supported if the live load is twice as large as the dead load. Use AISC Equation E3-2 or E3-3. a. Use LRFD. b. Use ASDarrow_forwardA steel I-beam is suppose to be used as a beam, however, it was found out that the cross section cannot resist the demand. Hence, a steel C-section is added at the top to increase the capacity against flexure as shown. I' For the I-beam: Flange width is 329 mm. Flange thickness is 24 mm. Web height is 289 mm. Web thickness is 38 mm. For the C-section: Flange width is 52 mm. Flange thickness is 34 mm. Web height is 489 mm. Web thickness is 28 mm. Would you kindly help me find the centroidal moment of inertia for both the X and Y axes based on these dimensions? Thank you!arrow_forward
- Topic: BEAM BEARING PLATES AND COLUMN BASE PLATES - STEEL DESIGNarrow_forwardplss, i need the answer immediately!arrow_forwardThe given beam has a continuous lateral support. if the live load is twice the dead load, what is the maximum total service load, in kips/ft, that can be supported?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning