Steel Design (Activate Learning with these NEW titles from Engineering!)
Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.2.1P
To determine

(a)

Plastic section modulus Z and the plastic moment Mp with respect to the major principal axis.

Expert Solution
Check Mark

Answer to Problem 5.2.1P

The plastic section modulus Z=185.437in3 and the plastic moment Mp=772.65ft.kips with respect to the major principal axis.

Explanation of Solution

Given:

A flexural member is fabricated from two flange plates 12×712 and a web plate 38×17. The stress of the steel is 50Ksi.

Concept used:

The section is a symmetrical section which implies that the plastic neutral axis of the given section is same as the neutral of the given section. Therefore, calculating the lever arm and the centroid of the upper half of the given section, we can find the plastic section modulus.

We have the following figure that will define the terms that we have been given as per the question.

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 5, Problem 5.2.1P , additional homework tip  1

Calculation:

The following is the tabular measurement of every component required:

Elements h(inches) b(inches) A=h×b(inches)2 y(inches) Ay(inches)3
Web 38=0.375 172=8.5 8.5×0.375=3.1875 8.50 27.09
Flange 12=0.5 712=7.5 0.5×7.5=3.75 17.50 65.625
Sum A=6.94 y=26.00 Ay=92.72

Calculating the centroid of the top half as :

y¯=AyA

Substitute the values in the above equation.

y¯=Ay=92.72inA=6.94iny¯=13.36in.

Now, calculating the moment arm, we have the following formula :

a=2×y¯

Where, a is the moment arm of the section.

a=2×y¯a=2×13.36in.a=26.72in.

Now, the plastic section modulus can be calculated as follows:

Z=(A2)×a

Where, Z is plastic section modulus and A is area.

Z=(A2)×aZ=6.94in2×26.72in.Z=185.437in3.

Calculating the plastic moment as follows:

Mp=Fy×Z

Substitute the value of Fy and Z, we have

Mp=Fy×ZMp=50Ksi×185.437in3.Mp=9271.85in.kips.Mp=772.65ft.kips.

Conclusion:

Therefore, the plastic section modulus Z=185.437in3 and the plastic moment Mp=772.65ft.kips with respect to the major principal axis.

To determine

(b)

Elastic section modulus, S and the yield moment, My of the section with respect to the major principal axis.

Expert Solution
Check Mark

Answer to Problem 5.2.1P

The elastic section modulus, S=272.284in3 and the yield moment of the section with respect to the major principal axis is My=1134.52ft.kips.

Explanation of Solution

Given:

A flexural member is fabricated from two flange plates 12×712 and a web plate 38×17. The stress of the steel is 50Ksi.

Concept used:

The section is a symmetrical section which implies that the elastic neutral axis of the given section is coinciding with the neutral of the given section. Therefore, calculating the moment of inertia at the major axis using parallel axis theorem, we can find the elastic section modulus.

We have the following figure that will define the terms that we have been given as per the question.

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 5, Problem 5.2.1P , additional homework tip  2

Calculation:

The following is the tabular measurement of every component required:

Elements I¯(inches)4 A=h×b(inches)2 d(inches) I=I¯+A×d2(inches)4
Web 153.53 17×38=6.375 0.00 153.53
Top Flange 0.078125 0.5×7.5=3.75 17.50 I=0.078125+(3.75×17.502)I=1148.52
Bottom Flange 0.078125 0.5×7.5=3.75 17.50 I=0.078125+(3.75×17.502)I=1148.52
Sum I=2450.56

Calculate the Elastic section modulus S with the following formula

S=Ic

Where, C is the distance between the extreme fiber of the section and the neutral axis and is equal to

c=hw2+bf

Here, hw is the height of the web and bf is the width of flange.

By substituting the values in the above equation, we have

c=hw2+bfc=172+0.5c=8.5+0.5c=9.00in.

Substitute the value of c in the following equation, S=Ic

S=2450.56in49.00inS=272.284in3.

Now, calculate the yield moment My of the section with respect to the major principal axis as follows:

My=Fy×S

Substitute the value of Fy and S, we have

My=Fy×SMy=50Ksi×272.284in3.My=13614.22in.kips.My=1134.52ft.kips.

Conclusion:

Therefore, the elastic section modulus, S=272.284in3 and the yield moment of the section with respect to the major principal axis is My=1134.52ft.kips.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A gravity retaining wall is shown in the figure below. Calculate the factor of safety with respect to overturning and sliding, given the following data: Wall dimensions: H = 6 m, x1 = 0.6 m, x2 = 2 m, x3 = 2m, x4 0.5 m, x5 = 0.75 m, x6 = 0.8 m, D= 1.5 m Soil properties: 71 = 15.5 kN/m³, ₁ = 32°, Y2 = 18 kN/m³, 2=22°, c₂ = 40 kN/m² H x6 X2 TXT X3 Use Coulomb's active earth pressure in your calculation and let ' = 2/3 01. Use Yconcrete = 23.58 kN/m³. Also, use k₁ = k₂ = 2/3 and P = 0 in equation FS (sliding) (ΣV) tan(k₁₂2) + Bk2c + Pp Pa cos a For 1 = 32°, a = 0°, B = 71.57°, Ka = 0.45, 8' = 21.33°. (Enter your answers to three significant figures.) FS (overturning) FS (sliding) =
For the cantilever retaining wall shown in the figure below, let the following data be given: Wall dimensions: H = 6.5 m, x1 = 0.3 m, x2 = 0.6 m, x3 = 0.8 m, x4 2 m, x5 = 0.8 m, D= 1.5 m, a = 0° Soil properties: 71 = 17.08 kN/m³, ₁ = 36°, Y2 = 19.65 kN/m³, 2 = 15°, c₂ = 30 kN/m² For 2=15°: N = 10.98; N₁ = 3.94; N₁ = 2.65. x2 .. c₁ = 0 Φί H x5 Calculate the factor of safety with respect to overturning, sliding, and bearing capacity. Use Yconcrete = 24.58 kN/m³. Also, use k₁ = k2 = 2/3 and P₂ = 0 in equation (EV) tan(k102) + Bk2c₂ + Pp FS (sliding) Pa cos a (Enter your answers to three significant figures.) FS (overturning) FS (sliding) FS (bearing) = = =
A) # of Disinfection Clearwells: 3 B) Clearwell Operation Style: Parallel (to provide contact time for disinfection using free chlorine (derived from a hypochlorite solution generated onsite). C) The facility's existing system to generate hypochlorite onsite has reached the end of its useful life, and the current operating capacity is insufficient to generate the required mass flow of hypochlorite to accommodate the future capacity of 34.5 MGD. Assume the facility plans to stop generating hypochlorite onsite and will instead purchase a bulk solution of sodium hypochlorite D) Sodium hypochlorite (NaOCI) concentration: 6.25% NaOCI by mass E) Bulk Density: 1,100 kg/m^3 F) Clearwell T10/DT Ratio: (CW1 0.43). (CW2 = 0.51), (CW3 = 0.58) DT is the theoretical mean hydraulic retention time (V/Q) G) pH: 7.0 H) Design Temperature: 15°C 1) 50% of Chlorine is lost in each clearwell J) If the concentration going into the clearwell is C, then you can assume that the concentration leaving the…

Chapter 5 Solutions

Steel Design (Activate Learning with these NEW titles from Engineering!)

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning