
Concept explainers
(a)
Interpretation: The density of gas at STP should be calculated. If it is greater than the density of air or not should be determined.
Concept Introduction: The density of a substance is its mass per unit volume. It is mathematically represented as follows:
Here, m is mass and V is volume.
At STP, the value of temperature is
Here, P is pressure, V is volume, n is the number of moles, R is Universal gas constant and T is temperature.
Also, the number of moles is related to mass and molar mass as follows:
Here, m is mass and M is molar mass.
Putting the value of the number of moles from equation (3) to (2) thus,
Or,
Putting the value of volume in equation (1) thus,
Or,
(a)

Answer to Problem 5.49P
The density of
Explanation of Solution
The given gas is
The molar mass of the gas is 64.066 g/mol. The pressure and temperature at STP will be 1 atm and 298.15 K thus, density can be calculated using the following relation:
Putting the values,
The density of air at STP is 1.29 g/L. The value of density of
(b)
Interpretation: The density of gas at STP should be calculated. If it is greater than the density of air or not should be determined.
Concept Introduction: The density of a substance is its mass per unit volume. It is mathematically represented as follows:
Here, m is mass and V is volume.
At STP, the value of temperature is
Here, P is pressure, V is volume, n is the number of moles, R is Universal gas constant and T is temperature.
Also, the number of moles is related to mass and molar mass as follows:
Here, m is mass and M is molar mass.
Putting the value of number of moles from equation (3) to (2) thus,
Or,
Putting the value of volume in equation (1) thus,
Or,
(b)

Answer to Problem 5.49P
The density of
Explanation of Solution
The given gas is
The molar mass of the gas is 16.04 g/mol. The pressure and temperature at STP will be 1 atm and 273.15 K thus, density can be calculated using the following relation:
Putting the values,
The density of air at STP is 1.29 g/L. The value of density of
(c)
Interpretation: The density of gas at STP should be calculated. If it is greater than the density of air or not should be determined.
Concept Introduction: The density of a substance is its mass per unit volume. It is mathematically represented as follows:
Here, m is mass and V is volume.
At STP, the value of temperature is
Here, P is pressure, V is volume, n is the number of moles, R is Universal gas constant and T is temperature.
Also, the number of moles is related to mass and molar mass as follows:
Here, m is mass and M is molar mass.
Putting the value of the number of moles from equation (3) to (2) thus,
Or,
Putting the value of volume in equation (1) thus,
Or,
(c)

Answer to Problem 5.49P
The density of
Explanation of Solution
The given gas is
The molar mass of the gas is 1.008 g/mol. The pressure and temperature at STP will be 1 atm and 273.15 K thus, density can be calculated using the following relation:
Putting the values,
The density of air at STP is 1.29 g/L. The value of density of
(d)
Interpretation: The density of gas at STP should be calculated. If it is greater than the density of air or not should be determined.
Concept Introduction: The density of a substance is its mass per unit volume. It is mathematically represented as follows:
Here, m is mass and V is volume.
At STP, the value of temperature is
Here, P is pressure, V is volume, n is the number of moles, R is Universal gas constant and T is temperature.
Also, the number of moles is related to mass and molar mass as follows:
Here, m is mass and M is molar mass.
Putting the value of the number of moles from equation (3) to (2) thus,
Or,
Putting the value of volume in equation (1) thus,
Or,
(d)

Answer to Problem 5.49P
The density of
Explanation of Solution
The given gas is
The molar mass of the gas is 4.002 g/mol. The pressure and temperature at STP will be 1 atm and 273.15 K thus, density can be calculated using the following relation:
Putting the values,
The density of air at STP is 1.29 g/L. The value of density of
(e)
Interpretation: The density of gas at STP should be calculated. If it is greater than the density of air or not should be determined.
Concept Introduction: The density of a substance is its mass per unit volume. It is mathematically represented as follows:
Here, m is mass and V is volume.
At STP, the value of temperature is
Here, P is pressure, V is volume, n is the number of moles, R is Universal gas constant and T is temperature.
Also, the number of moles is related to mass and molar mass as follows:
Here, m is mass and M is molar mass.
Putting the value of the number of moles from equation (3) to (2) thus,
Or,
Putting the value of volume in equation (1) thus,
Or,
(e)

Answer to Problem 5.49P
The density of
Explanation of Solution
The given gas is
The molar mass of the gas is 44.01 g/mol. The pressure and temperature at STP will be 1 atm and 273.15 K thus, density can be calculated using the following relation:
Putting the values,
The density of air at STP is 1.29 g/L. The value of density of
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- The reaction is carried out with gases: A → B + C at 300 K. The total pressure is measured as a function of time (table). If the reaction order is 2, calculate the rate or kinetic constant k (in mol-1 L s¹) Ptotal (atm) 492 676 760 808 861 t(s) 0 600 1200 1800 3000arrow_forwardcan someone give a description of this NMR including whether its a triplt singlet doublet where the peak is around at ppm and what functional group it representsarrow_forward1. Determine the relationship between the following molecules as identical, diastereomers, or enantiomers (6 points, 2 points each). OH OH OH A-A OH HOT HO- ACHN and HO- ACHN OH HO HO ° OH and OH OH SH and ...SHarrow_forward
- 20,0 Complete the electron pushing mechanism to y drawing the necomery unicaciones and carved on for Step 1: Add curved arms for the tint step, traiment with NalilĻ. The Nation 458 Step 2: Added for the second step, inalment with), how the "counterion bar Step 3: Daw the products of the last simplom organic and one incoganic spacient, including all nonbondingarrow_forwardplease provide the structure for this problem, thank you!arrow_forwardDraw the Fischer projection from the skeletal structure shown below. HO OH OH OH OH H Q Drawing Atoms, Bonds and Rings Charges I ☐ T HO H H OH HO I CH2OH H OH Drag H OH -CH2OH CHO -COOH Undo Reset Remove Donearrow_forward
- please provide the structure for this problem, thank youarrow_forwardpresented by Morallen Lig Intermine the hand product for the given mution by adding atoms, bonds, nonhonding diarion panda скуль Step 3: Comp the draw the product Step 2: Agama workup Compithe 429 ملولةarrow_forwardReaction A 0,0arrow_forward
- presented by Morillon Leaning Predict the organic product for the min кусур HSC Adithane carved arnown to come than that to the condon slchroruis in acid in in aquishri with ноюarrow_forward6.15PM Sun Mar 30 K Draw the major product of this reaction. Include any relevant stereochemistry. Ignore inorganic byproducts. Problem 1 of O H [PhзPCH2CH3]*C|¯ NaH Drawing > Q Atoms, Bonds and Draw or tap a nearrow_forward8:17 PM Sun Mar 30 Draw the major product of this reaction. Ignore inorganic byproducts. HSCH2CH2CH2SH, BF3 Probler Drawing Ato Bonds Clarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





