Concept explainers
5-16 Answer true or false.
(a) For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.
(b) For a sample of gas at constant temperature, increasing the pressure increases the volume.
(c) For a sample of gas at constant temperature,
(d) As a gas expands at constant temperature, its volume increases.
(e) The volume of a sample of gas at constant pressure is directly proportional to its temperature—the higher its temperature, the greater its volume.
(f) A hot-air balloon rises because hot air is less dense than cooler air.
(g) For a gas sample in a container of fixed volume, an increase in temperature results in an increase in pressure.
(h) For a gas sample in a container of fixed volume, is a constant.
(i) When steam at 100°C in an autoclave is heated to 1200C, the pressure within the autoclave increases.
(j) When a gas sample in a flexible container at constant pressure at 25°C is heated to 50°C, its volume doubles.
(k) Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease.
(l) Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs.
(a)
Interpretation:
Find if the given statement is true or false.
“For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant, the given statement is true.
Explanation of Solution
Given information:
For a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.
We know, according to Boyle’s Law, we have.
Thus, for a sample of gas at constant temperature, its pressure multiplied by its volume is a constant.
(b)
Interpretation:
Find if the given statement is true or false.
“For a sample of gas at constant temperature, increasing the pressure increases the volume.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
For a sample of gas at constant temperature, increasing the pressure decreases the volume thus, the given statement is false.
Explanation of Solution
Given Information:
For a sample of gas at constant temperature, increasing the pressure increases the volume.
We know, according to Boyle’s Law, we have.
That means there is an inverse relationship between volume and pressure at constant temperature. When pressure is increased, volume is decreased and vice versa.
Thus, for a sample of gas at constant temperature, increasing the pressure decreases the volume.
(c)
Interpretation:
Find if the given statement is true or false.
“For a sample of gas at constant temperature,
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
For a sample of gas at constant temperature,
Explanation of Solution
Given Information:
For a sample of gas at constant temperature,
We know, according to Boyle’s Law, we have.
We two different sets of volume and pressure of the gas is considered, the above equation becomes as follows:
where
Thus, for a sample of gas at constant temperature,
(d)
Interpretation:
Find if the given statement is true or false.
“As a gas expands at constant temperature, its volume increases.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
As a gas expands at constant temperature, its volume increases. Thus, the given statement is true.
Explanation of Solution
Given Information:
As a gas expands at constant temperature, its volume increases.
When a gas expands, the distance between the gas particles increases. Thus, pressure decreases.
Also, we know, according to Boyle’s Law.
Decrease in pressure increases the volume.
Thus, as a gas expands at constant temperature, its volume increases.
(e)
Interpretation:
Find if the given statement is true or false.
“The volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume.”
Concept Introduction:
According to Charles’s Law, for the gas held at constant pressure, the volume of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
The volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume. Thus, the given statement is true.
Explanation of Solution
Given Information:
The volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume.
We know, according to Charles’s Law, we have.
There is a direct relationship between volume and temperature. As the temperature is increased, the volume is also increased.
Thus, the volume of a gas at constant pressure is directly proportional to its temperature − the higher its temperature, the greater its volume.
(f)
Interpretation:
Find if the given statement is true or false.
“A hot-air balloon rises because hot air is less dense than cooler air”.
Concept Introduction:
Hot air rises because when the air is heated, it undergoes expansion. This results in the air to become less dense than the air surrounding it.
Answer to Problem 5.16P
A hot-air balloon rises because hot air is less dense than cooler air, thus, the given statement is true.
Explanation of Solution
Given information:
A hot-air balloon rises because hot air is less dense than cooler air.
Hot air rises because when the air is heated, it undergoes expansion. This results in the air to become less dense than the air surrounding it.
Thus, a hot-air balloon rises because hot air is less dense than cooler air.
(g)
Interpretation:
Find if the given statement is true or false.
“For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.”
Concept Introduction:
According to Gay-Lussac’s Law, for the gas held at constant volume, the pressure of a given amount of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure. Thus, the given statement is true.
Explanation of Solution
Given information:
For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.
We know, according to Gay Lussac’s Law, we have.
There is a direct relationship between pressure and temperature. As the temperature is increased, the pressure is also increased.
Thus, for a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.
(h)
Interpretation:
Find if the given statement is true or false.
“For a gas sample in a container of fixed volume,
Concept Introduction:
According to Gay-Lussac’s Law, for the gas held at constant volume, the pressure of a given amount of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
For a gas sample in a container of fixed volume,
Explanation of Solution
Given information:
For a gas sample in a container of fixed volume, an increase in temperature results in the increase in pressure.
We know, according to Gay Lussac’s Law, we have.
Thus, for a gas sample in a container of fixed volume,
(i)
Interpretation:
Find if the given statement is true or false.
“When steam at
Concept Introduction:
According to Gay-Lussac’s Law, for the gas held at constant volume, the pressure of a given amount of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
When steam at
Explanation of Solution
Given Information:
When steam at
We know, according to Gay Lussac’s Law, we have.
There is a direct relationship between pressure and temperature. As the temperature is increased, the pressure is also increased.
Thus, when steam at
(j)
Interpretation:
Find if the given statement is true or false.
“When a gas sample in a flexible container at constant pressure at
Concept Introduction:
According to Charles’s Law, for the gas held at constant pressure, the volume of gas is directly proportional to the temperature of the gas. Mathematically, it is given as.
Answer to Problem 5.16P
When a gas sample in a flexible container at constant pressure at
Explanation of Solution
Given Information:
When a gas sample in a flexible container at constant pressure at
We know, according to Charles’s Law, we have.
There is a direct relationship between volume and temperature. As the temperature is increased, the volume is also increased.
Now, the temperature of the container is doubled, hence the volume of the flexible container is also doubled.
Thus, when a gas sample in a flexible container at constant pressure at
(k)
Interpretation:
Find if the given statement is true or false.
“Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease”.
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease thus, the given statement is true.
Explanation of Solution
Given information:
Lowering the diaphragm causes the chest cavity to increase in volume and the pressure of air in the lungs to decrease.
We know, according to Boyle’s Law, we have.
Now, when diaphragm is lowered, the chest cavity is increased. This results in the increase in volume and hence pressure decreases inside the lungs.
(l)
Interpretation:
Find if the given statement is true or false.
“Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs.”
Concept Introduction:
According to Boyle’s Law, the volume of fixed amount of gas is inversely proportional to the pressure of the gas at constant temperature. Mathematically, it is given as.
Answer to Problem 5.16P
Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs. Thus, the given statement is true.
Explanation of Solution
Given information:
Raising the diaphragm decreases the volume of the chest cavity and forces air out of the lungs.
We know, according to Boyle’s Law, we have.
Now, when diaphragm is raised, the volume chest cavity is decreased. This results in the decrease in volume and hence pressure increased inside the lungs and air is moved out of the lungs.
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- In the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward
- 1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward4. Determine the amount in grams of AgCl (s) formed when 2.580 g AgNO3(s) is added to 45.00 mL of a 0.1250 M CrCl3 (aq) (The other product is aqueous chromium (III) nitrate) 5. Determine the amount (in grams) of Cobalt (II) phosphate formed when an aqueous solution of 30.0 ml of 0.450 M Sodium Phosphate is mixed with 20.0 mL of 0.500 M aqueous solution of cobalt (II) nitrate. (The other product is aqueous sodium nitrate)arrow_forward7. Consider the following reaction that describes the dissolution of copper metal in nitric acid: Cu (s) + 4 HNO3 (aq) → Cu(NO3)2 (aq) + 2 H₂O (1) + 2 NO2 (g) How many mL of 3.50 M HNO3 (aq) are required to dissolve 20.00 g Cu?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning