Concept explainers
(a)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest as the ion-ion attractive forces are the strongest because they require the maximum amount of energy to break. Hence, this statement is false.
(b)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
The covalent bond energy depends on the strength of the bond or the number of shared pairs of electrons and the difference in the electronegativity. Different types of covalent bonds have different bond energies. Carbon-carbon triple bonds nave higher energy than carbon-carbon double bonds, which in tum, nave higher energy than a carbon-carbon single bond.
Hence, this statement is false.
(c)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is true.
Explanation of Solution
London dispersion forces are weak intermolecular forces that arise due to electrostatic interactions. Electron density in any atom sometimes shifts more towards one-part of the atom and creates a temporary dipole. The attractions between these temporarily induced dipoles are called London dispersion forces. Hence, this statement is true.
(d)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is true.
Explanation of Solution
London dispersion forces are the weak forces of attraction which depend on the mass, size, and shape of the interacting molecules. Due to acting upon large surface areas, they contribute to the attractive forces within the large molecules. Hence, this statement is true.
(e)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
London dispersion forces are weak forces of attraction which arise due to electrostatic interactions, and they exist between all molecules, whether they are nonpolar or polar. Hence, this statement is false.
(f)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is true.
Explanation of Solution
London dispersion forces are weak forces of attraction which exist between all molecules, whether they are polar or nonpolar. It the temperature falls far enough, even nonpolar molecules, such as He, Ne, H2, and CH4, can be liquefied. Hence, this statement is true.
(g)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is true.
Explanation of Solution
The intermolecular forces of attraction between gas particles are fragile. The kinetic energy of molecules depends on temperature and has some significant amounts of energy. Hence, this statement is true.
(h)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is true.
Explanation of Solution
A dipole is a pair of opposite charges of equal magnitude separated at a distance. Dipole-dipole interaction is the attraction between two opposite ends of two dipoles or the positive end of one dipole and the negative end of another dipole.
Hence, this statement is true.
(i)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
Of the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
Dipole-dipole interaction exists between dipoles. The CO molecule is a polar molecule, as carbon and oxygen nave three covalent bonds, one double bond, and one dative coordinate bond towards carbon from oxygen. Due to this coordinate bond, CO behaves like a dipole. CO2 has linear geometry and is a centrosymmetric molecule Thus; its dipole moment is zero. However, individual C —O bonds form a dipole. Therefore, dipole-dipole interactions are possible between CO2 molecules. Hence, this statement is false.
(j)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
The dipole-dipole interactions exist between two identical polar molecules or between two different polar molecules. For such an interaction, the molecule should be polar. The strength of the dipole interaction depends on the electronegativity difference of the molecules. It the electronegativity difference for both molecules of the same molecular weight is the same, then the strength of the dipole-dipole interaction will be the same for both of the molecules. Hence, this statement is false.
(k)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
Hydrogen bonding occurs due to the dipole-dipole interaction of a molecule, which has a hydrogen atom on the positive end of one dipole and an atom of higher electronegativity (O, N, or F) at the negative end of another dipole. Hence, this statement is false.
(l)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
The strength of a
(m)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is true.
Explanation of Solution
The three major intermolecular forces between molecules are hydrogen bonding, dipole-dipole interactions, and London dispersion forces, and all of them are electrostatic, as these forces occur between positive for negative and negative for positive charges. Hence, this statement is true.
(n)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is true.
Explanation of Solution
The hydrogen bonding in a water molecule has an important effect on the physical properties of liquid water. A hydrogen bond needs extra energy to separate each water molecule. Hence water has a high boiling point. Sulfur is less electronegative; thus, it has weak hydrogen bonding as compared to a water molecule. So, not as much heat is required to boil H2 S. Hence, this statement is true.
(o)
Interpretation:
If the given statement is true or false should be determined.
Concept Introduction:
From the force of attraction between particles, London dispersion forces are the weakest and covalent are the strongest. All the covalent bonds have approximately the same energy. London dispersion forces arise because of the attraction of temporary induced dipoles.
Answer to Problem 5.61P
The given statement is false.
Explanation of Solution
Oxygen is the second highest electronegative element, while nitrogen is the third most electronegative element in the periodic table. The hydrogen bonding In two different compounds depends on the electronegativity of the elements. Therefore, the strength of hydrogen bonding in an O-H bond is greater than in an N-H bond. Hence, this statement is false.
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning