Thermodynamics, Statistical Thermodynamics, & Kinetics
Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
Question
Book Icon
Chapter 5, Problem 5.16NP

(a)

Interpretation Introduction

Interpretation: The value of heat, work done, change in internal energy, change in entropy and change in enthalpy needs to be determined if a gas undergoes a reversible adiabatic expansion and final pressure is 1/3rd of the initial.

Concept Introduction:

The change in enthalpy for a process can be calculated as follows:

  ΔH=CP,mnΔT

Here, CP,m is molar heat capacity at constant pressure.

Also, the change in internal energy as follows:

  ΔU=CV,mnΔT

Here, CV,m is molar heat capacity at constant volume.

Also,

  ΔU=q+w

Here, q is heat and w is work done.

The ideal gas equation is represented as follows:

  PV=nRT

Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.

(b)

Interpretation Introduction

Interpretation: The value of heat, work done, change in internal energy, change in entropy and change in enthalpy needs to be determined if a gas undergoes an adiabatic expansion at constant external pressure and final pressure is 1/3rd of the initial volume.

Concept Introduction:

The change in enthalpy for a process can be calculated as follows:

  ΔH=CP,mnΔT

Here, CP,m is molar heat capacity at constant pressure.

Also, the change in internal energy as follows:

  ΔU=CV,mnΔT

Here, CV,m is molar heat capacity at constant volume.

Also,

  ΔU=q+w

Here, q is heat and w is work done.

The ideal gas equation is represented as follows:

  PV=nRT

Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.

(c)

Interpretation Introduction

Interpretation: The value of heat, work done, change in internal energy, change in entropy and change in enthalpy needs to be determined if a gas undergoes an expansion at zero external pressure and final pressure is 1/3rd of the initial volume.

Concept Introduction:

The change in enthalpy for a process can be calculated as follows:

  ΔH=CP,mnΔT

Here, CP,m is molar heat capacity at constant pressure.

Also, the change in internal energy as follows:

  ΔU=CV,mnΔT

Here, CV,m is molar heat capacity at constant volume.

Also,

  ΔU=q+w

Here, q is heat and w is work done.

The ideal gas equation is represented as follows:

  PV=nRT

Here, P is pressure, V is volume, n is number of moles, R is Universal gas constant and T is temperature.

Blurred answer
Students have asked these similar questions
For the titration of a divalent metal ion (M2+) with EDTA, the stoichiometry of the reaction is typically: 1:1 (one mole of EDTA per mole of metal ion) 2:1 (two moles of EDTA per mole of metal ion) 1:2 (one mole of EDTA per two moles of metal ion) None of the above
Please help me solve this reaction.
Indicate the products obtained by mixing 2,2-dimethylpropanal with acetaldehyde and sodium ethoxide in ethanol.

Chapter 5 Solutions

Thermodynamics, Statistical Thermodynamics, & Kinetics

Ch. 5 - Prob. 5.11CPCh. 5 - An ideal gas undergoes an adiabatic expansion into...Ch. 5 - When a saturated solution of a salt is cooled, a...Ch. 5 - Prob. 5.14CPCh. 5 - Prob. 5.15CPCh. 5 - Prob. 5.16CPCh. 5 - Why is the efficiency of a Carnot heat engine the...Ch. 5 - Two vessels of equal volume, pressure and...Ch. 5 - Solid methanol in thermal contact with the...Ch. 5 - Can incandescent lighting be regarded as an...Ch. 5 - The Chalk Point, Maryland, generating station...Ch. 5 - An electrical motor is used to operate a Carnot...Ch. 5 - An air conditioner is a refrigerator with the...Ch. 5 - Prob. 5.5NPCh. 5 - The average heat evolved by the oxidation of...Ch. 5 - Prob. 5.9NPCh. 5 - The maximum theoretical efficiency of an internal...Ch. 5 - Prob. 5.11NPCh. 5 - Prob. 5.12NPCh. 5 - Prob. 5.13NPCh. 5 - Prob. 5.14NPCh. 5 - Prob. 5.15NPCh. 5 - Prob. 5.16NPCh. 5 - Prob. 5.17NPCh. 5 - Prob. 5.18NPCh. 5 - Prob. 5.19NPCh. 5 - Prob. 5.20NPCh. 5 - Prob. 5.21NPCh. 5 - Prob. 5.22NPCh. 5 - Prob. 5.23NPCh. 5 - Prob. 5.24NPCh. 5 - Prob. 5.25NPCh. 5 - Prob. 5.26NPCh. 5 - Under anaerobic conditions, glucose is broken down...Ch. 5 - Prob. 5.28NPCh. 5 - Prob. 5.29NPCh. 5 - Prob. 5.30NPCh. 5 - Prob. 5.31NPCh. 5 - Calculate Ssurroundings and Stotal for the...Ch. 5 - A refrigerator is operated by a 0.25-hp...Ch. 5 - Prob. 5.34NPCh. 5 - Between C and 100C, the heat capacity of Hg(l) is...Ch. 5 - Prob. 5.36NPCh. 5 - Prob. 5.37NPCh. 5 - Prob. 5.38NPCh. 5 - Prob. 5.39NPCh. 5 - Prob. 5.40NPCh. 5 - Prob. 5.41NPCh. 5 - Prob. 5.42NPCh. 5 - An ideal gas sample containing 1.75 moles for...Ch. 5 - Prob. 5.44NPCh. 5 - Prob. 5.45NP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning