Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.15NP
Interpretation Introduction
Interpretation:
The decrease in temperature when 2.25 moles of water initially at 310 K and 1650 bar pressure is brought to 1.30 bar in a reversible adiabatic process needs to be calculated
Concept Introduction:
A process is said to be adiabatic if there is not transfer of heat (q) between the system and surroundings i.e. q = 0
The entropy change (ΔS) associated with a process is the ratio of the heat transferred (q) and temperature (T)
For a reversible adiabatic process, q = 0 therefore, ΔS = 0
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.250 mol nitrogen initially at 50 °C with a volume of 8.00 L is allowed to expand reversibly and adiabatically until its volume has doubled. Calculate the value of ΔHwhen Cp = 7/2R.
9.
Consider a sample of water vapour, which expands reversibly and adiabatically from
97.3 Torr and 400 cm3 to a final volume of 5.0 dm3. Take y = 1.3. Calculate the final
pressure of the sample.
Please solve this problem
Chapter 5 Solutions
Thermodynamics, Statistical Thermodynamics, & Kinetics
Ch. 5 - Under what conditions is S0 for a spontaneous...Ch. 5 - Why are Sfustion and Svaporization always...Ch. 5 - An ideal gas in thermal contact with the...Ch. 5 - Prob. 5.4CPCh. 5 - Prob. 5.5CPCh. 5 - You are told that S=0 for a process in which the...Ch. 5 - Under what conditions does the equality S=H/T...Ch. 5 - Is the following statement true or false? If it is...Ch. 5 - Prob. 5.9CPCh. 5 - One Joule of work is done on a system, raising its...
Ch. 5 - Prob. 5.11CPCh. 5 - An ideal gas undergoes an adiabatic expansion into...Ch. 5 - When a saturated solution of a salt is cooled, a...Ch. 5 - Prob. 5.14CPCh. 5 - Prob. 5.15CPCh. 5 - Prob. 5.16CPCh. 5 - Why is the efficiency of a Carnot heat engine the...Ch. 5 - Two vessels of equal volume, pressure and...Ch. 5 - Solid methanol in thermal contact with the...Ch. 5 - Can incandescent lighting be regarded as an...Ch. 5 - The Chalk Point, Maryland, generating station...Ch. 5 - An electrical motor is used to operate a Carnot...Ch. 5 - An air conditioner is a refrigerator with the...Ch. 5 - Prob. 5.5NPCh. 5 - The average heat evolved by the oxidation of...Ch. 5 - Prob. 5.9NPCh. 5 - The maximum theoretical efficiency of an internal...Ch. 5 - Prob. 5.11NPCh. 5 - Prob. 5.12NPCh. 5 - Prob. 5.13NPCh. 5 - Prob. 5.14NPCh. 5 - Prob. 5.15NPCh. 5 - Prob. 5.16NPCh. 5 - Prob. 5.17NPCh. 5 - Prob. 5.18NPCh. 5 - Prob. 5.19NPCh. 5 - Prob. 5.20NPCh. 5 - Prob. 5.21NPCh. 5 - Prob. 5.22NPCh. 5 - Prob. 5.23NPCh. 5 - Prob. 5.24NPCh. 5 - Prob. 5.25NPCh. 5 - Prob. 5.26NPCh. 5 - Under anaerobic conditions, glucose is broken down...Ch. 5 - Prob. 5.28NPCh. 5 - Prob. 5.29NPCh. 5 - Prob. 5.30NPCh. 5 - Prob. 5.31NPCh. 5 - Calculate Ssurroundings and Stotal for the...Ch. 5 - A refrigerator is operated by a 0.25-hp...Ch. 5 - Prob. 5.34NPCh. 5 - Between C and 100C, the heat capacity of Hg(l) is...Ch. 5 - Prob. 5.36NPCh. 5 - Prob. 5.37NPCh. 5 - Prob. 5.38NPCh. 5 - Prob. 5.39NPCh. 5 - Prob. 5.40NPCh. 5 - Prob. 5.41NPCh. 5 - Prob. 5.42NPCh. 5 - An ideal gas sample containing 1.75 moles for...Ch. 5 - Prob. 5.44NPCh. 5 - Prob. 5.45NP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Define isobaric,isochoric, isenthalpic,and isothermal. Can achangein a gaseous system be isobaric, isochoric,and isothermal at the same time? Why or why not?arrow_forwardWhat are the numerical values of the heat capacities c-v and c-p of a monatomic ideal gas,in units of cal/mol.K and L.atm/mol.K?arrow_forwardCalculate V−1(∂V/∂T)p,n for an ideal gas?arrow_forward
- A sample consisting of 2.0 mol CO2 occupies a fixed volume of 15.0 dm3 at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature increases to 341 K. Assuming that CO2 is described by the van der Waals equation of state (Topic 1C), calculate w, ΔU, and ΔH.arrow_forwardIn a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the hot source at 273 K and 3.00 kJ of work is generated. What is the temperature of the cold sink?arrow_forward4. The heat capacity of solid lead oxide is given by the equation: Cp(T) = 44.35 + 1.47 × 10-3 xT with T in units of K and the resulting Cp(T) in units of K-mol Calculate the change in enthalpy of 1 mole of PbO(s) if it is heated from 200 to 600 K at constant pressure. (Assume no phase transitions take place during this process.)arrow_forward
- Recall that the van der Waals equation of state—an extension of the ideal gas equation—attempts to better capture the behavior of real gases. It can be written to parallel the PV = nRT form of the ideal gas equation: (P + an2/V2) (V − nb) = nRTa) For one mole of a van der Waals gas, derive an expression for the work done by a reversible and isothermal change in volume. In other words, evaluate the following integral for the van der Waals gasw = − {integral with limits from v1 to v2} PdV.b) What are physical interpretations of the van der Waals constants a and b?c) If for helium, the van der Waals constant b is equal to 2.43 × 10–5m3 mol-1, using this value for b, calculate the diameter of the helium atom.arrow_forward4arrow_forwardAssume N₂ behaves as perfect gas. It expands reversibly and adiabatically from Vi to Vf with the pressure change from pi to pf. (a) Derive the temperature versus volume relationship and the pressure and volume relationship for this expansion. (b) When a sample of N₂ of mass 3.12 g at 23.0 °C is allowed to expand reversibly and adiabatically from 4.00 × 10² cm3 to 2.00 dm3, what is the work done by the gas?arrow_forward
- A sample consisting of 2.0 mol CO2 occupies a fixed volume of 15.0 dm3 at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature increases to 341 K. Assume that CO2 is described by the van der Waals equation of state, and calculate w, ∆U, and ∆H.arrow_forwardA sample of nitrogen initially at T = 25 oC and p = 4.0 atm triples its initial volume. What will be its final temperature and pressure if it expands reversibly adiabatically?arrow_forwardA sample of 2.2 mol CO2(g) is originally confined in 15 dm3 at 280 K and then undergoes adiabatic expansion against a constant pressure of 78.5 kPa until the volume has increased by a factor of 4.0. Calculate ΔT. (The final pressure of the gas is not necessarily 78.5 kPa.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY