Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 5.16CP
Interpretation Introduction
Interpretation:
Whether the following equation is valid for an ideal gas or not should be determined.
Concept Introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function. The spontaneous change takes place with an increase in entropy of the universe.
The expression is shown as:
The sum of entropy change of system and surrounding is equal to entropy change of universe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the work (in J) associated with the expansion of a gas from 44ml to 63 ml at a constant pressure of 14 arm
Assume N₂ behaves as perfect gas. It expands reversibly and adiabatically from Vi to Vf with the pressure change from pi to pf.
(a) Derive the temperature versus volume relationship and the pressure and volume relationship for this expansion.
(b) When a sample of N₂ of mass 3.12 g at 23.0 °C is allowed to expand reversibly and adiabatically from 4.00 × 10² cm3 to 2.00 dm3, what is the work done by the gas?
a chemist carefully measure the amount of heat needed to raise the temperature of a 0.60 kg sample of a pure substance from 47.3 c tp 53.3c. the experiment shows that 15. kj of heat are needed. what can the chemist report for the specific heat capacity of the substance? round to 2 sig figs.
Chapter 5 Solutions
Thermodynamics, Statistical Thermodynamics, & Kinetics
Ch. 5 - Under what conditions is S0 for a spontaneous...Ch. 5 - Why are Sfustion and Svaporization always...Ch. 5 - An ideal gas in thermal contact with the...Ch. 5 - Prob. 5.4CPCh. 5 - Prob. 5.5CPCh. 5 - You are told that S=0 for a process in which the...Ch. 5 - Under what conditions does the equality S=H/T...Ch. 5 - Is the following statement true or false? If it is...Ch. 5 - Prob. 5.9CPCh. 5 - One Joule of work is done on a system, raising its...
Ch. 5 - Prob. 5.11CPCh. 5 - An ideal gas undergoes an adiabatic expansion into...Ch. 5 - When a saturated solution of a salt is cooled, a...Ch. 5 - Prob. 5.14CPCh. 5 - Prob. 5.15CPCh. 5 - Prob. 5.16CPCh. 5 - Why is the efficiency of a Carnot heat engine the...Ch. 5 - Two vessels of equal volume, pressure and...Ch. 5 - Solid methanol in thermal contact with the...Ch. 5 - Can incandescent lighting be regarded as an...Ch. 5 - The Chalk Point, Maryland, generating station...Ch. 5 - An electrical motor is used to operate a Carnot...Ch. 5 - An air conditioner is a refrigerator with the...Ch. 5 - Prob. 5.5NPCh. 5 - The average heat evolved by the oxidation of...Ch. 5 - Prob. 5.9NPCh. 5 - The maximum theoretical efficiency of an internal...Ch. 5 - Prob. 5.11NPCh. 5 - Prob. 5.12NPCh. 5 - Prob. 5.13NPCh. 5 - Prob. 5.14NPCh. 5 - Prob. 5.15NPCh. 5 - Prob. 5.16NPCh. 5 - Prob. 5.17NPCh. 5 - Prob. 5.18NPCh. 5 - Prob. 5.19NPCh. 5 - Prob. 5.20NPCh. 5 - Prob. 5.21NPCh. 5 - Prob. 5.22NPCh. 5 - Prob. 5.23NPCh. 5 - Prob. 5.24NPCh. 5 - Prob. 5.25NPCh. 5 - Prob. 5.26NPCh. 5 - Under anaerobic conditions, glucose is broken down...Ch. 5 - Prob. 5.28NPCh. 5 - Prob. 5.29NPCh. 5 - Prob. 5.30NPCh. 5 - Prob. 5.31NPCh. 5 - Calculate Ssurroundings and Stotal for the...Ch. 5 - A refrigerator is operated by a 0.25-hp...Ch. 5 - Prob. 5.34NPCh. 5 - Between C and 100C, the heat capacity of Hg(l) is...Ch. 5 - Prob. 5.36NPCh. 5 - Prob. 5.37NPCh. 5 - Prob. 5.38NPCh. 5 - Prob. 5.39NPCh. 5 - Prob. 5.40NPCh. 5 - Prob. 5.41NPCh. 5 - Prob. 5.42NPCh. 5 - An ideal gas sample containing 1.75 moles for...Ch. 5 - Prob. 5.44NPCh. 5 - Prob. 5.45NP
Knowledge Booster
Similar questions
- In the equation w = P V, why is there a negative sign?arrow_forwardCalculate the standard Gibbs free-energy change when SO3 forms from SO2 and O2 at 298 K. Why is sulfur trioxide an important substance to study? (Hint: What happens when it combines with water?)arrow_forwardFor the reaction BaCO3(s) BaO(s) + CO2(g), rG = +219.7 kJ/mol-rxn. Using this value and other data available in Appendix L, calculate the value of fG for BaCO3(s).arrow_forward
- Arrange the following sets of systems in order of increasing entropy. Assume one mole of each substance and the same temperature for each member of a set.. (a) H2(g), HBrO4(g), HBr(g). (b)H2O(l), H2O(g), H2O(s). (c) He(g), Cl2(g), P4(g)arrow_forwardFor the process H2O(l)H2O(g) at 298 K and 1.0 atm, H is more positive than E by 2.5 kJ/mol. What does the 2.5 kJ/mol quantity represent?arrow_forwardDetermine an expression for V/T p, n in terms of and . Does the sign on the expression make sense in terms of what you know happens to volume as temperature changes?arrow_forward
- Describe why it is easier to use Gto determine the spontaneity of a process rather than S uarrow_forwardA 1.00 mol sample of H2 is carefully warmed from 22 K to 40 K at constant volume. a What is the expected heat capacity of the hydrogen? b What is q for the process?arrow_forwardCalculate the ΔS for the transformation of 3.00 mols of a perfect monoatomic gas, with Cp,m = 5/2 R, starting at 25 °C and 1.00 atm for the final state at 125 °C and 5.00 atm.arrow_forward
- One mole of N2(g) occupies 5 L of volume at 300 K in a sealed cylinder. The gas behaves ideally in expanding isothermally to 10 L. Calculate w, ΔE and ΔH if the expansion proceeds (i) reversibly, (ii) irreversibly against an external pressure at 0.2 atm.arrow_forwardFor nitrogen gas the values of C and C₁ at 25°C are 20.8 J K¯¹ mol-¹ and 29.1 J K¯¹ mol-¹, respectively. When a sample of nitrogen is heated at constant pressure, what fraction of the energy is used to increase the internal energy of the gas? How is the remainder of the energy used? The remainder of the energy is used to ---Select--- the volume of the gas against the constant pressure. How much energy is required to raise the temperature of 119.7 g N₂ from 25.0°C to 81.0°C in a vessel having a constant volume? KJarrow_forwardFrom the following data, determine A;H© for diborane, B2H6(g), at 298 K: (1) B,H(g) + 3 O2(g)→ B2O3(s) + 3 H2O(g) A,H© =-1941 kJ mol (2) 2 B(s) + 3/2 O2(g)→ B2O3(S) A,H© =-2368 kJ mol· (3) H2(g) + 1/2 O2(g) → H2O(g) A„H© = -241.8 kJ mol-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning