Concept explainers
Liquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied.
If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25°C? Use the preceding chemical equation and ignore the volume of solid product.
Trending nowThis is a popular solution!
Chapter 5 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Additional Science Textbook Solutions
Microbiology with Diseases by Body System (5th Edition)
Loose Leaf For Integrated Principles Of Zoology
Organic Chemistry
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Fundamentals Of Thermodynamics
- Pyruvic acid, HC3H3O3, is involved in cell metabolism. It can be assayed for (that is, the amount of it determined) by using a yeast enzyme. The enzyme makes the following reaction go to completion: HC3H3O3(aq)C2H4O(aq)+CO2(g) If a sample containing pyruvic acid gives 21.2 mL of carbon dioxide gas, CO2, at 349 mmHg and 30C, how many grams of pyruvic acid are there in the sample?arrow_forward109 An ore sample with a mass of 670 kg contains 27.7% magnesium carbonate, MgCO3. If all of the magnesium carbonate in this ore sample is decomposed to form carbon dioxide, describe how to determine what volume of CO2 is evolved during the process. What would have to be measured to predict the needed volume in advance?arrow_forwardAmmonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forward
- Raoul Pictet, the Swiss physicist who first liquefied oxygen, attempted to liquefy hydrogen. He heated potassium formate, KCHO2, with KOH in a closed 2.50-Lvessel. KCHO2(s)+KOH(s)K2CO3(s)+H2(g) If 75.0 g of potassium formate reacts in a 2.50-L vessel, which was initially evacuated, what pressure of hydrogen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forwardIf equal masses of O2 and N2 are placed in separate containers of equal volume at the same temperature, which of the following statements is true? If false, explain why it is false. (a) The pressure in the flask containing N2 is greater than that in the flask containing O2. (b) There are more molecules in the flask containing O2 than in the flask containing N2.arrow_forwardA chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forward
- A mixture contained calcium carbonate, CaCO3, and magnesium carbonate, MgCO3. A sample of this mixture weighing 7.85 g was reacted with excess hydrochloric acid. The reactions are CaCO3(g)+2HCL(aq)CaCl2(aq)+H2O(I)+CO2(g)MgCO3(s)+2HCL(aq)MgCl2(aq)+H2O(I)+CO2(g) If the sample reacted completely and produced 1.94 L of carbon dioxide, CO2, at 25C and 785 mmHg, what were the percentages of CaCO3 and MgCO3 in the mixture?arrow_forwardYou have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardA sample of a smoke stack emission was collected into a 1.25-L tank at 752 mm Hg and analyzed. The analysis showed 92% CO2, 3.6% NO, 1.2% SO2, and 4.1% H2O by mass. What is the partial pressure exerted by each gas?arrow_forward
- You have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass. (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 C. Calculate the molar mass and identify the compound. (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.arrow_forwardHydrogen azide, HN3, decomposes on heating by the following unbalanced equation: HN3O(g)N2(g)+H2(g) If 3.0 atm of pure HN3(g) is decomposed initially, what is the final total pressure in the reaction container? What are the partial pressures of nitrogen and hydrogen gas? Assume the volume and temperature of the reaction container are constant.arrow_forwardA sample of a breathing mixture for divers contained 34.3% helium, He; 51.7% nitrogen, N2; and 14.0% oxygen, O2 (by mass). What is the density of this mixture at 22C and 775 mmHg?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning