Concept explainers
(a)
Interpretation:
Considering a gas container equipped with a movable piston, the change in volume and pressure should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
(a)

Answer to Problem 5.31QP
An increase of pressure by 2 times to the original, will decrease volume by
Explanation of Solution
Figure 1
From
Pressure and volume are inversely proportional to each other. So the increase in pressure causes decrease in volume C to D.
The change in volume with respect to pressure was explained.
(b)
Interpretation:
Considering a gas container equipped with a movable piston, the change in volume and pressure should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
(b)

Answer to Problem 5.31QP
An increase of volume (C to A) by 2 times to the original, will decrease pressure by
Explanation of Solution
Figure 1
From Ideal
Pressure and volume are inversely proportional to each other. So the increase in volume (C to A) causes decrease in pressure as molecules get more space to move around.
The change in volume with respect to pressure was explained.
(c)
Interpretation:
Considering a gas container equipped with a movable piston, the change in temperature when volume changes from C to B should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
(c)

Answer to Problem 5.31QP
The change in kelvin temperature by 1.5 factor would cause the change in volume (C to B)
Explanation of Solution
Figure 1
From Ideal gas law,
Temperature and volume are proportional to each other. So the increase in volume (C to A) causes increase in temperature.
The change in volume with respect to temperature was explained
(d)
Interpretation:
The change in volume and pressure when the number of moles increased in a container with a moving piston should be explained.
Concept Introduction:
Ideal gas equation:
At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.
Ideal gas equation:
And the SI units are
(d)

Answer to Problem 5.31QP
The increase in the number of moles by 2 factor would cause the increase in volume by 2 factor (C to A).
Explanation of Solution
Figure 1
From Ideal gas law,
Number of particles and volume are proportional to each other. So the increase in molecules would increase the volume by 2 factor (C to A). Since the piston is movable the pressure will not be affected (similar to starting pressure) even though number of particles and pressure are directly proportional to each other.
The change in volume and pressure when the number of moles increased in a container with a moving piston was explained.
Want to see more full solutions like this?
Chapter 5 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- Draw the major product of this reaction. Ignore inorganic byproducts. ○ O 1. H₂O, pyridine 2. neutralizing work-up a N W X 人 Parrow_forward✓ Check the box under each molecule that has a total of five ẞ hydrogens. If none of the molecules fit this description, check the box underneath the table. tab OH CI 0 Br xx Br None of these molecules have a total of five ẞ hydrogens. esc Explanation Check caps lock shift 1 fn control 02 F2 W Q A N #3 S 80 F3 E $ t 01 205 % 5 F5 & 7 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility FT * 8 R T Y U כ F6 9 FIG F11 F D G H J K L C X V B < N M H option command P H + F12 commandarrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts and the carboxylic acid side product. O 1. CHзMgBr (excess) 2. H₂O ✓ W X 人arrow_forward
- If cyclopentyl acetaldehyde reacts with NaOH, state the product (formula).arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. N S S HgCl2, H2SO4 く 8 W X Parrow_forwardtab esc く Drawing the After running various experiments, you determine that the mechanism for the following reaction occurs in a step-wise fashion. Br + OH + Using this information, draw the correct mechanism in the space below. 1 Explanation Check F2 F1 @2 Q W A os lock control option T S # 3 80 F3 Br $ 4 0105 % OH2 + Br Add/Remove step X C F5 F6 6 R E T Y 29 & 7 F D G H Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce A F7 DII F8 C Ո 8 * 9 4 F10 F C J K L C V Z X B N M H command P ge Coarrow_forward
- Indicate compound A that must react with ethylbenzene to obtain 4-ethylbenzene-1-sulfonic acid. 3-bromo-4-ethylbenzene-1-sulfonic acid.arrow_forwardPart 1 of 2 Draw the structure of A, the minor E1 product of the reaction. esc I Skip Part Check H₂O, D 2 A + Click and drag to start drawing a structure. -0- F1 F2 1 2 # 3 Q A 80 F3 W E S D F4 $ 4 % 5 F5 ㅇ F6 R T Y F G X 5 & 7 + Save 2025 McGraw Hill LLC. All Rights Reserved. DII F7 F8 H * C 80 J Z X C V B N 4 F9 6arrow_forwardFile Preview The following is a total synthesis of the pheromone of the western pine beetle. Such syntheses are interesting both because of the organic chemistry, and because of the possibility of using species specific insecticides, rather than broad band insecticides. Provide the reagents for each step. There is some chemistry from our most recent chapter in this synthesis, but other steps are review from earlier chapters. (8 points) COOEt COOEt A C COOEt COOEt COOH B OH OTS CN D E See the last homework set F for assistance on this one. H+, H₂O G OH OH The last step is just nucleophilic addition reactions, taking the ketone to an acetal, intramolecularly. But it is hard to visualize the three dimensional shape as it occurs. Frontalin, pheromone of the western pine beetlearrow_forward
- For the reaction below: 1. Draw all reasonable elimination products to the right of the arrow. 2. In the box below the reaction, redraw any product you expect to be a major product. C Major Product: Check + ◎ + X ง © Cl I F2 80 F3 I σ F4 I F5 NaOH Click and drawing F6 A 2025 McGraw Hill LLC. All Rights E F7 F8 $ # % & 2 3 4 5 6 7 8 Q W E R T Y U A S D F G H Jarrow_forwardCan I please get help with this graph. If you can show exactly where it needs to pass through.arrow_forwardN Draw the major product of this reaction. Ignore inorganic byproducts. D 1. H₂O, pyridine 2. neutralizing work-up V P W X DE CO e C Larrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





