Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5.105QP
Ethane and acetylene are two gaseous hydrocarbons. Chemical analyses show that in one sample of ethane. 2.65 g of carbon are combined with 0.665 g of hydrogen, and in one sample of acetylene, 4.56 g of carbon are combined with 0.383 g of hydrogen, (a) Are these results consistent with the law of multiple proportions? Explain, (b) Write reasonable molecular formulas for these compounds.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. (a) Magnesium oxide was formed when the metal burns in air.
(i)
If 1.25 g of magnesium oxide contains 0.754 g of magnesium, determine the mass ratio of magnesium
magnesium
oxide.
(ii)
Calculate the weight of magnesium in 534 g of magnesium oxide.
The element oxygen has three naturally occurring isotopes, with 8,9, and 10 neutrons in
the nucleus, respectively. (a) write the full chemical symbols for these three isotopes. (b)
Describe the similarities and differences between the three kinds of atoms of oxygen.
Two gaseous A and B are common hydrocarbons. Chemical analyses demonstrate
that in one sample of A, 9.12 g of carbon are combined with 0.766 g of hydrogen,
and in one sample of B, 5.3 g of carbon are combined with 1.33 g of hydrogen, (a)
Are these results consistent with the law of multiple proportions? (b) Write
reasonable empirical formulas for these compounds. (C:12, g/mol H:1 g/mol)
Chapter 5 Solutions
Chemistry: Atoms First
Ch. 5.2 - Write Lewis dot symbols for (a) fluoride ion (F),...Ch. 5.2 - Write Lewis dot symbols for (a) Ca2+, (b) N3 and...Ch. 5.2 - Indicate the charge on each of the ions...Ch. 5.2 - Prob. 1PPCCh. 5.2 - Prob. 5.2.1SRCh. 5.2 - Prob. 5.2.2SRCh. 5.2 - Prob. 5.2.3SRCh. 5.2 - Prob. 5.2.4SRCh. 5.3 - Arrange MgO, CaO, and SrO in order of increasing...Ch. 5.3 - Prob. 2PPA
Ch. 5.3 - Arrange the compounds NaF, MgO, and AlN in order...Ch. 5.3 - Prob. 2PPCCh. 5.3 - Prob. 5.3.1SRCh. 5.3 - Prob. 5.3.2SRCh. 5.4 - Prob. 5.3WECh. 5.4 - Prob. 3PPACh. 5.4 - Prob. 3PPBCh. 5.4 - Prob. 3PPCCh. 5.4 - Prob. 5.4WECh. 5.4 - Prob. 4PPACh. 5.4 - Prob. 4PPBCh. 5.4 - Prob. 4PPCCh. 5.4 - Prob. 5.4.1SRCh. 5.4 - Prob. 5.4.2SRCh. 5.4 - Prob. 5.4.3SRCh. 5.4 - Prob. 5.4.4SRCh. 5.5 - Prob. 5.5WECh. 5.5 - Prob. 5PPACh. 5.5 - Draw (a) a space-filling molecular model of carbon...Ch. 5.5 - Prob. 5PPCCh. 5.5 - Prob. 5.6WECh. 5.5 - Prob. 6PPACh. 5.5 - Prob. 6PPBCh. 5.5 - Prob. 6PPCCh. 5.5 - Prob. 5.5.1SRCh. 5.5 - Prob. 5.5.2SRCh. 5.6 - Name the following binary molecular compounds: (a)...Ch. 5.6 - Prob. 7PPACh. 5.6 - Prob. 7PPBCh. 5.6 - Prob. 7PPCCh. 5.6 - Prob. 5.8WECh. 5.6 - Give the molecular formula for each of the...Ch. 5.6 - Prob. 8PPBCh. 5.6 - Draw a molecular model of sulfur trioxide.Ch. 5.6 - Prob. 5.6.1SRCh. 5.6 - Prob. 5.6.2SRCh. 5.6 - Prob. 5.6.3SRCh. 5.6 - Prob. 5.6.4SRCh. 5.7 - Prob. 5.9WECh. 5.7 - Name the following ionic compounds: (a) Na2SO4,...Ch. 5.7 - Prob. 9PPBCh. 5.7 - Prob. 9PPCCh. 5.7 - Name the following species: (a) BrO4, (b) HCO3,...Ch. 5.7 - Prob. 10PPACh. 5.7 - Prob. 10PPBCh. 5.7 - Prob. 10PPCCh. 5.7 - Prob. 5.11WECh. 5.7 - Prob. 11PPACh. 5.7 - Prob. 11PPBCh. 5.7 - Prob. 11PPCCh. 5.7 - Prob. 5.7.1SRCh. 5.7 - Prob. 5.7.2SRCh. 5.7 - Prob. 5.7.3SRCh. 5.7 - Prob. 5.7.4SRCh. 5.8 - Calculate the molecular mass or the formula mass,...Ch. 5.8 - Calculate the molecular or formula mass of each of...Ch. 5.8 - Prob. 12PPBCh. 5.8 - Prob. 12PPCCh. 5.8 - Prob. 5.8.1SRCh. 5.8 - Prob. 5.8.2SRCh. 5.8 - Prob. 5.8.3SRCh. 5.8 - Prob. 5.8.4SRCh. 5.8 - Prob. 5.8.5SRCh. 5.8 - Prob. 5.8.6SRCh. 5.9 - Prob. 5.13WECh. 5.9 - Prob. 13PPACh. 5.9 - Prob. 13PPBCh. 5.9 - Prob. 13PPCCh. 5.9 - Prob. 5.9.1SRCh. 5.9 - Prob. 5.9.2SRCh. 5.10 - Prob. 5.14WECh. 5.10 - Prob. 14PPACh. 5.10 - Prob. 14PPBCh. 5.10 - Prob. 5.15WECh. 5.10 - Prob. 15PPACh. 5.10 - Prob. 15PPBCh. 5.10 - Prob. 15PPCCh. 5.10 - Prob. 5.16WECh. 5.10 - Prob. 16PPACh. 5.10 - Prob. 16PPBCh. 5.10 - Prob. 16PPCCh. 5.10 - Prob. 5.10.1SRCh. 5.10 - Prob. 5.10.2SRCh. 5.10 - Prob. 5.10.3SRCh. 5.10 - Prob. 5.10.4SRCh. 5 - Define the term compound and explain how a...Ch. 5 - Prob. 5.2QPCh. 5 - Prob. 5.3QPCh. 5 - Prob. 5.4QPCh. 5 - Use the second member of each group from Group 1A...Ch. 5 - Without referring to Figure 5.1, write Lewis dot...Ch. 5 - Prob. 5.7QPCh. 5 - Indicate the charge on each of the ions...Ch. 5 - To what group of the periodic table does element X...Ch. 5 - Explain what ionic bonding is.Ch. 5 - Prob. 5.11QPCh. 5 - Prob. 5.12QPCh. 5 - Prob. 5.13QPCh. 5 - Prob. 5.14QPCh. 5 - Prob. 5.15QPCh. 5 - Prob. 5.16QPCh. 5 - Prob. 5.17QPCh. 5 - Prob. 5.18QPCh. 5 - Prob. 5.19QPCh. 5 - Explain why the chemical formulas of ionic...Ch. 5 - Prob. 5.21QPCh. 5 - Give the formulas and names of the compounds...Ch. 5 - Prob. 5.23QPCh. 5 - Prob. 5.24QPCh. 5 - Prob. 5.25QPCh. 5 - Prob. 5.26QPCh. 5 - Prob. 5.27QPCh. 5 - Prob. 5.28QPCh. 5 - Prob. 5.29QPCh. 5 - Prob. 5.30QPCh. 5 - Prob. 5.31QPCh. 5 - Prob. 5.32QPCh. 5 - Prob. 5.33QPCh. 5 - Sulfur reacts with fluorine to produce three...Ch. 5 - Prob. 5.35QPCh. 5 - Prob. 5.36QPCh. 5 - Prob. 5.37QPCh. 5 - Prob. 5.38QPCh. 5 - Give an example of a case in which two molecules...Ch. 5 - Prob. 5.40QPCh. 5 - Prob. 5.41QPCh. 5 - Prob. 5.42QPCh. 5 - Identify the following as elements or compounds:...Ch. 5 - Prob. 5.44QPCh. 5 - Prob. 5.45QPCh. 5 - Prob. 5.46QPCh. 5 - Prob. 5.47QPCh. 5 - Prob. 5.48QPCh. 5 - Prob. 5.49QPCh. 5 - Describe how the naming of molecular binary...Ch. 5 - Define the term acid.Ch. 5 - Prob. 5.52QPCh. 5 - Prob. 5.53QPCh. 5 - Prob. 5.54QPCh. 5 - Prob. 5.55QPCh. 5 - Prob. 5.56QPCh. 5 - Prob. 5.57QPCh. 5 - Prob. 5.58QPCh. 5 - Prob. 5.59QPCh. 5 - Prob. 5.60QPCh. 5 - Prob. 5.61QPCh. 5 - Prob. 5.62QPCh. 5 - Prob. 5.63QPCh. 5 - Prob. 5.64QPCh. 5 - Prob. 5.65QPCh. 5 - Prob. 5.66QPCh. 5 - Prob. 5.67QPCh. 5 - Prob. 5.68QPCh. 5 - Prob. 5.69QPCh. 5 - Prob. 5.70QPCh. 5 - Prob. 5.71QPCh. 5 - Prob. 5.72QPCh. 5 - Prob. 5.73QPCh. 5 - Prob. 5.74QPCh. 5 - Prob. 5.75QPCh. 5 - Prob. 5.76QPCh. 5 - Prob. 5.77QPCh. 5 - Prob. 5.78QPCh. 5 - All the substances listed here are fertilizers...Ch. 5 - Prob. 5.80QPCh. 5 - Molar mass is numerically equivalent to molecular...Ch. 5 - Prob. 5.82QPCh. 5 - Prob. 5.83QPCh. 5 - Prob. 5.84QPCh. 5 - Prob. 5.85QPCh. 5 - Prob. 5.86QPCh. 5 - Prob. 5.87QPCh. 5 - The density of water is 1.00 g/mL at 4C. How many...Ch. 5 - Cinnamic alcohol is used to add a pleasant scent...Ch. 5 - The chemical formula for rust can be represented...Ch. 5 - Prob. 5.91QPCh. 5 - Prob. 5.92QPCh. 5 - Prob. 5.93QPCh. 5 - Prob. 5.94QPCh. 5 - Equilin is an estrogen isolated from the urine of...Ch. 5 - Prob. 5.96QPCh. 5 - Prob. 5.97QPCh. 5 - Prob. 5.98QPCh. 5 - Prob. 5.99QPCh. 5 - Prob. 5.100QPCh. 5 - What is wrong with or ambiguous about the phrase...Ch. 5 - Prob. 5.102QPCh. 5 - Prob. 5.103QPCh. 5 - Prob. 5.104QPCh. 5 - Ethane and acetylene are two gaseous hydrocarbons....Ch. 5 - Prob. 5.106QPCh. 5 - Prob. 5.107QPCh. 5 - Prob. 5.108QPCh. 5 - Prob. 5.109QPCh. 5 - Prob. 5.110QPCh. 5 - Prob. 5.111QPCh. 5 - Determine the molecular and empirical formulas of...Ch. 5 - Prob. 5.113QPCh. 5 - Prob. 5.114QPCh. 5 - Prob. 5.115QPCh. 5 - Prob. 5.116QPCh. 5 - Prob. 5.117QPCh. 5 - Prob. 5.118QPCh. 5 - Prob. 5.119QPCh. 5 - Prob. 5.120QPCh. 5 - Prob. 5.121QPCh. 5 - Prob. 5.122QPCh. 5 - Prob. 5.123QPCh. 5 - Prob. 5.124QPCh. 5 - Prob. 5.125QPCh. 5 - Prob. 5.126QPCh. 5 - Prob. 5.127QPCh. 5 - The compound 2,3-dimercaptopropanol...Ch. 5 - Prob. 5.129QPCh. 5 - Prob. 5.130QPCh. 5 - Prob. 5.131QPCh. 5 - Prob. 5.132QPCh. 5 - Calculate the number of cations and anions in each...Ch. 5 - Calculate the percent composition by mass of all...Ch. 5 - Prob. 5.135QPCh. 5 - Prob. 5.136QPCh. 5 - Prob. 5.137QPCh. 5 - Prob. 5.138QPCh. 5 - Prob. 5.1KSPCh. 5 - Prob. 5.2KSPCh. 5 - Prob. 5.3KSPCh. 5 - Prob. 5.4KSP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Two compounds of iron and chlorine, A and B, contain 1.270 g and 1.904 g of chlorine, respectively, for each gram of iron. Show that these amounts are in the ratio 2 : 3. Is this consistent with the law of multiple proportions? Explain.arrow_forwardConsider the following data for three binary compounds of hydrogen and nitrogen: %H (by Mass) %N (by Mass) I 17.75 82.25 II 12.58 87.42 III 2.34 97.66 When 1.00 L of each gaseous compound is decomposed to its elements, the following volumes of H2(g) and N2(g) are obtained: H2(L) N2(L) I 1.50 0.50 II 2.00 1.00 III 0.50 1.50 Use these data to determine the molecular formulas of compounds I, II, and III and to determine the relative values for the atomic masses of hydrogen and nitrogen.arrow_forwardThe element bromine is Br2, so the mass of a Br2 molecule is the sum of the mass of its two atoms. Bromine has two isotopes. The mass spectrum of Br2 produces three peaks with relative masses of 157.836, 159.834, and 161.832, and relative heights of 6.337, 12.499. and 6.164, respectively. (a) What isotopes of bromine are present in each of the three peaks? (b) What is the mass of each bromine isotope? (c) What is the average atomic mass of bromine? (d) What is the abundance of each of the two bromine isotopes?arrow_forward
- Samples of compound X, Y, and Z are analyzed, with results shown here. Compound Description Mass of Carbon Mass of Hydrogen X clear, colorless, liquid with strong odor 1.776 g 0.148 g Y clear, colorless, liquid with strong odor 1.974 g 0.329 g Z clear, colorless, liquid with strong odor 7.812 g 0.651 g Do these data provide example(s) of the law of definite proportions, the law of multiple proportions, neither, or both? What do these data tell you about compounds X, Y, and Z?arrow_forwardEach of the following statements is true, but Dalton might have had trouble explaining some of them with his atomic theory. Give explanations for the following statements. a. The space-filling models for ethyl alcohol and dimethyl ether are shown below. These two compounds have die same composition by mass (52% carbon, 13% hydrogen, and 35% oxygen), yet the two have different melting points, boiling points, and solubilities in water. b. Burning wood leaves an ash that is only a small fraction of the mass of the original wood. c. Atoms can be broken down into smaller particles. d. One sample of lithium hydride is 87.4% lithium by mass, while another sample of lithium hydride Ls 74.9% lithium by mass. However, the two samples have the same chemical properties.arrow_forwardThere are 1.699 1022 atoms in 1.000 g of chlorine. Assume that chlorine atoms are spheres of radius 0.99 and that they are lined up side by side in a 0.5-g sample. How many miles in length is the line of chlorine atoms in the sample?arrow_forward
- Two basic laws of chemistry are the law of conservation of mass and the law of constant composition. Which of these laws (if any) do the following statements illustrate? (a) The mass of phosphorus, P, combined with one gram of hydrogen, H, in the highly toxic gas phosphene, PH3, is a little more than twice the mass of nitrogen, N, combined with one gram of hydrogen in ammonia gas, NH3. (b) A cold pack has the same mass before and after the seal between two reactants is broken to allow reaction to occur. (c) It is highly improbable that carbon monoxide gas found in Los Angeles is C1.2O1.1.arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible. 21. Repeat Exercise 2.20 using an element that has three naturally occurring isotopes.arrow_forwardClick on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible.arrow_forward
- Two basic laws of chemistry are the law of conservation of mass and the law of constant composition. Which of these laws (if any) do the following statements illustrate? (a) Lavoisier found that when mercury(ll) oxide, HgO, decomposes, the total mass of mercury (Hg) and oxygen formed equals the mass of mercury(ll) oxide decomposed. (b) Analysis of the calcium carbonate found in the marble mined in Carrara, Italy, and in the stalactites of the Carlsbad Caverns in New Mexico gives the same value for the percentage of calcium in calcium carbonate. (c) Hydrogen occurs as a mixture of two isotopes, one of which is twice as heavy as the other.arrow_forwardThe element europium exists in nature as two isotopes: 151Eu has a mass of 150.9196 amu, and 153Eu has a mass of 152.9209 amu. The average atomic mass of europium is 151.96 amu. a. Calculate the relative abundance of the two europium isotopes. b. Graph each fractional abundance value as a y-axis value in association with its corresponding mass value on the x-axis. Starting from each x-axis value, where y = 0, draw a vertical line up to the fractional abundance value. The result will approximate the type of visual graph a mass spectrometer would yield for europium in the 150155 amu range.arrow_forwardThese questions concern the work of J. J. Thomson: From Thomson’s work, which particles do you think he would feel are most important in the formation of compounds (chemical changes) and why? Of the remaining two subatomic particles, which do you place second in importance for forming compounds and why? Come up with three models that explain Thomson’s findings and evaluate them. To be complete you should include Thomson’s findings.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Atomic Number, Atomic Mass, and the Atomic Structure | How to Pass ChemistryThe Nucleus: Crash Course Chemistry #1; Author: Crash Course;https://www.youtube.com/watch?v=FSyAehMdpyI;License: Standard YouTube License, CC-BY