Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 44P
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 3.2 m. determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 45°C and 98 kPa respectively.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Argon is accelerated in a nozzle from 32 m/s at 666 K to 441 m/s and 196 kPa. If the heat loss is equal to 5.1 kJ/kg, determine the gas temperature at outlet in K to 1 decimal place. Take the gas constant as 0.2 (kPa m3)/(kg K) and assume constant specific heats cp=0.5 kJ/(kg K) and cv=0.3 kJ/(kg K).
A pump is to be used to deliver water from a tank in which the absolute pressure is 2 atm. The height of water level in the tank is 70 m above the pump inlet. The vapor pressure of water is 7 kPa. By neglecting the loss of head in the suction side, the NPSH is: *
A nozzle operates with steam entering at 700 kPa and 300 °C. The velocity at the inlet is 30 m/s. As the steam flows through the nozzle, the pressure decreases. Determine the area ratio value (Area / Area inlet), where Area inlet is the cross sectional area of the nozzle at the inlet, at the sections of the nozzle where the pressure values are 650, 550, 450, 350, and 250 kPa. Assume nozzle operates isentropically.
Chapter 5 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 5 - Name four physical quantities that are conserved...Ch. 5 - Define mass and volume flow rates. How are they...Ch. 5 - Does the amount of mass entering a control volume...Ch. 5 - When is the flow through a control volume steady?Ch. 5 - Consider a device with one inlet and one outlet....Ch. 5 - In climates with low night-time temperatures, an...Ch. 5 - A garden hose attached with a nozzle is used to...Ch. 5 - Air whose density is 0.082 Ibm/ft3 enters the duct...Ch. 5 - A 0.7$-m3 rigid tank initially contains air whose...Ch. 5 - Consider the flow of an incompressible Newtonian...
Ch. 5 - Consider a fully filled tank of semi-circular...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - The minimum fresh air requirement of a residential...Ch. 5 - Air enters a nozzle steadily at 2.21 kg/m3 and 20...Ch. 5 - Air at 40°C flow steadily through the pipe shown...Ch. 5 - A hair dryer is basically a duct of constant...Ch. 5 - Define turbine efficiency, generator efficiency,...Ch. 5 - What is mechanical efficiency? What does a...Ch. 5 - How is the combined pump-motor efficiency of a...Ch. 5 - What is mechanical energy? How does it differ from...Ch. 5 - Prob. 22PCh. 5 - A differential thermocouple with sensors at the...Ch. 5 - Electric power is to be generated by installing a...Ch. 5 - Consider a river flowing toward a lake at an...Ch. 5 - Water is pumped from a lake to a storage tank 18 m...Ch. 5 - Prob. 28CPCh. 5 - Express the Bernoulli equation in three different...Ch. 5 - What are the three major assumptions used in the...Ch. 5 - Define static, dynamic, and hydrostatic pressure....Ch. 5 - What is streamwise acceleration? How does it...Ch. 5 - What is stagnation pressure? Explain how it can be...Ch. 5 - Prob. 34CPCh. 5 - How is the location of the hydraulic grade line...Ch. 5 - Prob. 36CPCh. 5 - What is the hydraulic grade line? How does it...Ch. 5 - A glass manometer with oil as the working fluid is...Ch. 5 - The velocity of a fluid flowing in a pipe is to be...Ch. 5 - The water level of a tank on a building roof is 20...Ch. 5 - Prob. 41CPCh. 5 - In a hydroelectric power plant, water enters the...Ch. 5 - A Pitot-static probe is used to measure the speed...Ch. 5 - The air velocity in the duct of a heating system...Ch. 5 - Prob. 45EPCh. 5 - A piezometer and a Pitot tube are tapped into a...Ch. 5 - The diameter of a cylindrical water tank is D0and...Ch. 5 - A siphon pumps water from a large reservoir to a...Ch. 5 - Prob. 49PCh. 5 - Water flows through a horizontal pipe at a rate of...Ch. 5 - An airplane is flying at an altitude of 10.500 m....Ch. 5 - While traveling on a dirt road, the bottom of a...Ch. 5 - The water in an 8-rn-diameter, 3-rn-high...Ch. 5 - Reconsider Prob. 5-49. Determine how long it will...Ch. 5 - Air at 105 kPa and 37°C flows upward through a...Ch. 5 - A handheld bicycle pump can be used as an atomizer...Ch. 5 - Water at 20°C is siphoned from a reservoir as...Ch. 5 - The water pressure in the mains of a city at a...Ch. 5 - A pressurized tank of water has a 10-cm-diameter...Ch. 5 - Air is flowing through a venturi meter whose...Ch. 5 - The water level in a tank is 15 m above the...Ch. 5 - A Pilot-static probe connected to a water...Ch. 5 - The air velocity in a duct is measured by a...Ch. 5 - In cold climates, water pipes may freeze and burst...Ch. 5 - A well-fitting piston with 4 small holes in a...Ch. 5 - A fluid of density and viscosity flows through a...Ch. 5 - What is useful pump head? How is it related to the...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is irreversible head loss? How is it related...Ch. 5 - Consider the steady adiabatic flow of an...Ch. 5 - What is the kinetic energy correction factor? Is...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A person is filling a knee-high bucket with water...Ch. 5 - A 3-rn-high tank filled with water has a discharge...Ch. 5 - In a hydroelectric power plant, water flows from...Ch. 5 - Reconsider Prob. 5-78E. Determine the flow rate of...Ch. 5 - An oil pump is drawing 25 kW of electric power...Ch. 5 - Tater is being pumped from a large lake to a...Ch. 5 - A 15-hp (shaft) pump is used to raise water to a...Ch. 5 - Water flows at a rate of 0.035 m3/s in a...Ch. 5 - The water level in a tank is 20 m above the...Ch. 5 - A hydraulic turbine has 50 m of head available at...Ch. 5 - A fan is to be selected to ventilate a bathroom...Ch. 5 - Water flows at a rate of 20 L/s through a...Ch. 5 - The water level in a tank is 34 ft above the...Ch. 5 - A large tank is initially filled with water 5 m...Ch. 5 - Water enters a hydraulic turbine through a...Ch. 5 - The velocity profile for turbulent flow in a...Ch. 5 - Water is pumped from a lower reservoir to a higher...Ch. 5 - Water in a partially filled large tank is to be...Ch. 5 - Underground water is to be pumped by a 78 percent...Ch. 5 - Reconsider Prob. 5-88. Determine the flow rate of...Ch. 5 - A 78-percent efficient 12-hp pump is pumping water...Ch. 5 - The demand for electric power is usually much...Ch. 5 - When a system is subjected to a linear rigid body...Ch. 5 - A fireboat is to fight fires at coastal areas by...Ch. 5 - The velocity of a liquid flowing in a circular...Ch. 5 - Air at 250 kgrn3 enters a nozzle that has an...Ch. 5 - The water level in a tank is 70 ft above the...Ch. 5 - A pressurized 2-rn-diameter tank of water has a...Ch. 5 - Air flows through a pipe at a rate of 120 L/s. The...Ch. 5 - A very large tank contains air at 102 kPa at a...Ch. 5 - Water is flowing through a Venturi meter whose...Ch. 5 - Water flows at a rate of 0.011 m3/s in a...Ch. 5 - The air in a 6-m × 5-m × 4-m hospital room is to...Ch. 5 - Underground water is being pumped into a pool...Ch. 5 - A 3-rn-high large tank is initially filled with...Ch. 5 - Reconsider Prob. 5-105. In order to dram the tank...Ch. 5 - A D0=8 -m-diameter tank is initially filled with...Ch. 5 - In some applications, elbow-type flow meters like...Ch. 5 - The cylindrical water tank with a valve at the...Ch. 5 - A rigid tank of volume 1.5 m3 initially contains...Ch. 5 - A wind tunnel draws atmospheric air at 20°C and...Ch. 5 - Water flows in a 5-cm-diameter pipe at a velocity...Ch. 5 - Air at 100 kPa and 20°C flows in a 12-cm-diameter...Ch. 5 - A water tank initially contains 140 L of water....Ch. 5 - Water enters a 4-cm-diameter pipe at a velocity of...Ch. 5 - The pressure of water is increased from 100 kPa to...Ch. 5 - A 75-m-high water body that is open to the...Ch. 5 - A pump is used to increase the pressure of water...Ch. 5 - A hydraulic turbine is used to generate power by...Ch. 5 - The motor of a pump consumes 1.05 hp of...Ch. 5 - The efficiency of a hydraulic turbine-generator...Ch. 5 - Which parameter is not related in the Bernoulli...Ch. 5 - Consider incompressible, frictionless flow of a...Ch. 5 - Consider incompressible, frictionless flow of...Ch. 5 - Consider water flow in a piping network. The...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The static and stagnation pressures of a fluid in...Ch. 5 - The difference between the heights of energy grade...Ch. 5 - Water at 120 kPa (gage) is flowing in a horizontal...Ch. 5 - Water is withdrawn a the bottom of a large tank...Ch. 5 - Water at 80 kPa (gage) enters a horizontal pipe at...Ch. 5 - Seawater is to be pumped into a large tank at a...Ch. 5 - Water enters a pump at 350 kPa at a rate of 1...Ch. 5 - An adiabatic pump is used to increase the pressure...Ch. 5 - The shaft power from a 90 percent-efficient...Ch. 5 - Using a 1are bucket whose volume is known and...Ch. 5 - Your company is setting up an experiment that...Ch. 5 - Computer-aided designs, the use of better...Ch. 5 - Using a handheld bicycle pump to generate an air...Ch. 5 - Using a flexible drinking straw and a ruler,...Ch. 5 - The power generated by a wind turbine is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to flow. If the differential height between the water columns connected to the two outlets of the probe is 2.4 cm, determine the flow velocity at the center of the duct in m/s. R of air is 287 J/Kg-K.arrow_forward. A plant is located at an altitude of 2500 ft where the atmospheric pressure is 27.5 in. Hg absolute, has an open feedwater heater located 10 ft above the pump centerline. The water in the heater has a temperature of 190 F. If the head loss in the suction pipe between the heater and the pump is 1 ft, determine the available suction head at the pumparrow_forwardIn a heat engine, water vapor flows into a turbine and then it enters a condenser for rejecting thermal energy. The system requires maintaining the gauge pressure of the steam at 1400 kPa at the turbine inlet and at a vacuum of 71 cmHg in the condenser. Having that the barometric pressure is measured as 77.2 cmHg, calculate the absolute pressures (in kPa) of the steam at the turbine inlet and in the condenser. (Density of mercury is 13600 kg/m3)arrow_forward
- In air-conditioning applications, the temperature of air is measured by inserting a probe into the flow stream. Thus, the probe actually measures the stagnation temperature. Does this cause any significant error?arrow_forwardThe water level in a tank is 12 m above the ground. A hose is connected to the bottom of the tank, and the nozzle at the end of the hose is pointed straight up. The tank is at 13 m above the sea level, and the water surface is open to the atmosphere. In the line leading from the tank to the nozzle is a pump, which increases the water pressure by 50 kPa. Determine the maximum height above the sea level to which the water stream could rise.arrow_forwardA generator on a research aircraft requires 0.2 slugs per second of cooling air. A cooling air scoop for the generator is designed to be operated while the aircraft is cruising at 200 mph at 20,000 ft above sea level in standard atmospheric conditions. The scoop connects to an opening on the generator casing that has an area of 2 ft2 . Determine the required area of the inlet of the scoop. Also determine the air velocities and pressures at the scoop inlet and at the connection with the generator casing.arrow_forward
- 4. Carbon dioxide flows steadily through a varying cross-sectional-area duct such as a nozzle at a mass flow rate of 3 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to a pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the following parameters at each location along the duct that corresponds to a pressure drop of 200 kPa: (i) density; (ii) velocity; (iii) flow area; (iv) mach number. You may assume: • Carbon dioxide is an ideal gas with constant specific heats at room temperature; • Flow through the duct is steady, one-dimensional and isentropic. Use cp=…arrow_forwardPravinbhaiarrow_forwardA 6-cm-diameter horizontal water pipe expands gradually to a 9-cm-diameter pipe. The walls of the expansion section are angled 30° from the horizontal. The average velocity and pressure of water before the expansion section are 7 m/s and 150 Ka, respectively. Determine the pressure (KPa) in the larger-diameter pipe.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License