
Concept explainers
a.
Tofindthe interval on which the function
a.

Answer to Problem 3RE
The function is then increasing for
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Now setting the derivative equal to zero to find the critical values,
Therefore, the critical values are
From the critical values the possible intervals are
Now to determine which of the intervals is increasing,
Consider
Consider
Consider
Consider
Therefore, the function is increasing for
b.
To find the interval on which the function
b.

Answer to Problem 3RE
The function is decreasing for
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Now setting the derivative equal to zero to find the critical values,
Therefore, the critical values are
From the critical values the possible intervals are
Now to determine which of the intervals is decreasing,
Consider
Consider
Consider
Consider
Therefore, the function is decreasing for
c.
To find the interval on which the function
c.

Answer to Problem 3RE
The function is concave up for
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Factor out
Now to find the possible points of inflection,
Equating
This polynomial does not appear to be factorable so solve for
Therefore, this has no real solution so there are no values of
Hence,
Since
Therefore, the function is concave up for
d.
To find the interval on which the function
d.

Answer to Problem 3RE
The function is concave down for no values of
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Factor out
Now to find the possible points of inflection,
Equating
This polynomial does not appear to be factorable so solve for
Therefore, this has no real solution so there are no values of
Hence,
Since
Therefore, the function is concave down for no values of
e.
To find the interval on which the function
e.

Answer to Problem 3RE
The function haslocal extreme values are at
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Here the derivative is undefined if
Now setting the derivative equal to zero to find the critical values,
The critical values include all the values that makes
Then the possible intervals are given by
Now to determine whether the function is increasing or decreasing on these intervals by substituting a value for
Consider
Consider
Consider
Consider
Therefore,
Since
The local extreme are then local minimums at
Therefore, the function has local extreme values are at
f.
To find the interval on which the function
f.

Answer to Problem 3RE
The function has no inflection points.
Explanation of Solution
Given information:
The given function is
Formula:
Chain rule:
Consider the function
Using product and chain rule:
Here
Factor out
Now to find the possible points of inflection,
Equating
This polynomial does not appear to be factorable so solve for
Therefore, there are no real solutions so there are no values of
Hence,
Since
Therefore, the function has no inflection points.
Chapter 5 Solutions
Calculus: Graphical, Numerical, Algebraic
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Elementary Statistics: Picturing the World (7th Edition)
College Algebra (7th Edition)
Introductory Statistics
Calculus: Early Transcendentals (2nd Edition)
- (#1) Consider the solid bounded below by z = x² and above by z = 4-y². If we were to project this solid down onto the xy-plane, you should be able to use algebra to determine the 2D region R in the xy-plane for the purposes of integration. Which ONE of these limite of integration would correctly describe R? (a) y: x24x: -22 - (b) y: 22 x: 04-y² (c) y: -√√4-x2. →√√4x²x: −2 → 2 (d) z: 24-y² y: -2 → 2 (e) None of the abovearrow_forwardX MindTap - Cenxxxx Answered: tat "X A 26308049 X 10 EKU-- SP 25: X E DNA Sequenc X b/ui/evo/index.html?elSBN=9780357038406&id=339416021&snapshotid=877369& GE MINDTAP , Limits, and the Derivative 40. Answer 5 4-5 t-10 5 f(x) = 2x - 4 if x ≤0 if x 0 10 ++ -4-3-2-1 f(x) = MacBook Pro Search or type URL 5 1234 x² +1 if x = 0 if x = 0 +arrow_forwardMindTap - Cemy X Answered: tat x A 26308049 × 10 EKU--SP 25:11 × E DNA Sequence x H. pylori index.html?elSBN=9780357038406&id=339416021&snapshotid=877369& NDTAP and the Derivative 41. 42. Answer 12 Ay 5 + -10-5 5 10 -5- f(x) = x +5 if x ≤ 0 -x²+5 if x > 0 to -5 5. 5 f(x) = |x − 1| MacBook Pro AAarrow_forward
- Mind Tap - Cenxxx Answered: tat X A 26308049 × 10 EKU-- SP 25: X E DNA Sequence x H. pylor vo/index.html?elSBN=9780357038406&id=339416021&snapshotld=877369& MINDTAP its, and the Derivative 44. Answer 5 X -10-5 5 10 -5. f(x) = 2 + x +5 if x 0 3 4 f(x) = x² - 1 x+1 if x = -1 MacBook Pro G Search or type URL if x = -1 + AA aarrow_forwardCalculus lll May I please have an explanation of the multivariable chain rule in the example given? Thank youarrow_forwardMind Tap - Cenxxx Answered: tat X A 26308049 X 10 EKU-- SP 25:1 x E DNA Sequence x H. pyl /nb/ui/evo/index.html?elSBN 9780357038406&id=339416021&snapshotid=877369& ⭑ SAGE MINDTAP a ons, Limits, and the Derivative 吃 AA In Exercises 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, and 56, find the values of x for which each function is continuous. 45. f(x) = 2x²+x-1 Answer▾ 46. f(x) = x³- 2x²+x-1 47. f(x) 2 = x²+1 Answer 48. f(x) = 49. f(x) = Answer 50. f(x) = 51. f(x) = I 2x²+1 2 2x - 1 x+1 x-1 2x + 1 x²+x-2 Answer↓ 52. f(x)= = x-1 x2+2x-3 53. $ % MacBook Proarrow_forward
- Calculus lll May I please have the solution for the following exercise? Thank youarrow_forward2z = el+cos(x+y) 24 = olt etz dy = 1 dt dz e²² + cos (+²+1++). 2++ (1+++cos C+²+1++) (+) dz 2+. etz 2t, + 2+⋅ cos (t² +++ 1) + t (1++1 dt + cos (+²+++1) 2. W= (yz) (yz) x x=e8++ 2 y= 3² + 3st, z=sent, hallar 2w 2w د 2u 2t 25 2t AX119 S Narrow_forwardpractice for test please help!arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





