
Concept explainers
a.
To find the intervals on which the function is increasing by using analytical method.
a.

Answer to Problem 15RE
The function is increasing in interval
Explanation of Solution
Given:
The function is
Calculation:
The function
Now put
So , there are three intervals that is
put
put
put
Therefore , the function is increasing in interval
Below is the graph of
From graph of
b.
To find the intervals on which the function is decreasing by using analytical method.
b.

Answer to Problem 15RE
The function is decreasing in interval
Explanation of Solution
Given:
The function is
Calculation:
The function
Now put
So , there are three intervals that is
put
put
put
Therefore , the function is decreasing in interval
Below is the graph of
From graph of
c.
To find the intervals on which the function is concave up by using analytical method.
c.

Answer to Problem 15RE
The Function
Explanation of Solution
Given:
The function is
Calculation:
The graph of a twice differentiable function
Concave up on any interval where
Since,
First derivative :
Second derivative :
Now, put
Therefore , there are three intervals that is
check the value of
Now for
Now for
Now for
Therefore, the Function
Below is the graph of
From graph it is clear that, the Function
d.
To find the intervals on which the function is concave down by using analytical method.
d.

Answer to Problem 15RE
The Function
Explanation of Solution
Given:
The function is
Calculation:
The graph of a twice differentiable function
Concave up on any interval where
Since,
First derivative :
Second derivative :
Now, put
Therefore , there are three intervals that is
check the value of
Now for
Now for
Now for
Therefore, the Function
Below is the graph of
From graph it is clear that, the Function
e.
To find any local extreme values.
e.

Answer to Problem 15RE
The function
Explanation of Solution
Given:
The function is
Calculation:
Graph of
From graph it is clear that the function
f.
To find inflections points.
f.

Answer to Problem 15RE
The inflection point is at
Explanation of Solution
Given:
The function is
Calculation:
Inflection point of any function is a point where the graph of function has a tangent line and where the concavity changes.
Since,
Therefore, the inflection point is at
Chapter 5 Solutions
Calculus: Graphical, Numerical, Algebraic
Additional Math Textbook Solutions
Pre-Algebra Student Edition
College Algebra (7th Edition)
Introductory Statistics
Algebra and Trigonometry (6th Edition)
- The spread of an infectious disease is often modeled using the following autonomous differential equation: dI - - BI(N − I) − MI, dt where I is the number of infected people, N is the total size of the population being modeled, ẞ is a constant determining the rate of transmission, and μ is the rate at which people recover from infection. Close a) (5 points) Suppose ẞ = 0.01, N = 1000, and µ = 2. Find all equilibria. b) (5 points) For the equilbria in part a), determine whether each is stable or unstable. c) (3 points) Suppose ƒ(I) = d. Draw a phase plot of f against I. (You can use Wolfram Alpha or Desmos to plot the function, or draw the dt function by hand.) Identify the equilibria as stable or unstable in the graph. d) (2 points) Explain the biological meaning of these equilibria being stable or unstable.arrow_forwardFind the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardshow sketcharrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardQuestion 1: Evaluate the following indefinite integrals. a) (5 points) sin(2x) 1 + cos² (x) dx b) (5 points) t(2t+5)³ dt c) (5 points) √ (In(v²)+1) 4 -dv ขarrow_forwardFind the indefinite integral. Check Answer: In(5x) dx xarrow_forward
- Find the indefinite integral. Check Answer: 7x 4 + 1x dxarrow_forwardHere is a region R in Quadrant I. y 2.0 T 1.5 1.0 0.5 0.0 + 55 0.0 0.5 1.0 1.5 2.0 X It is bounded by y = x¹/3, y = 1, and x = 0. We want to evaluate this double integral. ONLY ONE order of integration will work. Good luck! The dA =???arrow_forward43–46. Directions of change Consider the following functions f and points P. Sketch the xy-plane showing P and the level curve through P. Indicate (as in Figure 15.52) the directions of maximum increase, maximum decrease, and no change for f. ■ 45. f(x, y) = x² + xy + y² + 7; P(−3, 3)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





