Crime Statistics Following is a quadratic model relating the murder rates described in Exercise: y = 0.1 x 2 − 3 x + 39 ( 15 ≤ x ≤ 25 ) , In 1996 the murder rate in smaller cities was approximately 22 murders per 100,000 residents each year and was decreasing at a rate of approximately 2.5 murders per 100,000 residents each year. Use the chain rule to estimate how fast the murder rate was changing for large cities. (Show how you used the chain rule in your answer.)
Crime Statistics Following is a quadratic model relating the murder rates described in Exercise: y = 0.1 x 2 − 3 x + 39 ( 15 ≤ x ≤ 25 ) , In 1996 the murder rate in smaller cities was approximately 22 murders per 100,000 residents each year and was decreasing at a rate of approximately 2.5 murders per 100,000 residents each year. Use the chain rule to estimate how fast the murder rate was changing for large cities. (Show how you used the chain rule in your answer.)
Solution Summary: The author calculates the speed at which the murder rate dyt was changing in larger cities during 1996 using chain rule.
Crime Statistics Following is a quadratic model relating the murder rates described in Exercise:
y
=
0.1
x
2
−
3
x
+
39
(
15
≤
x
≤
25
)
,
In 1996 the murder rate in smaller cities was approximately 22 murders per 100,000 residents each year and was decreasing at a rate of approximately 2.5 murders per 100,000 residents each year. Use the chain rule to estimate how fast the murder rate was changing for large cities. (Show how you used the chain rule in your answer.)
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
4. Use method of separation of variable to solve the following wave equation
მłu
J²u
subject to
u(0,t) =0, for t> 0,
u(л,t) = 0, for t> 0,
=
t> 0,
at²
ax²'
u(x, 0) = 0,
0.01 x,
ut(x, 0) =
Π
0.01 (π-x),
0
Chapter 4 Solutions
Student Solutions Manual for Waner/Costenoble's Applied Calculus, 7th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.