GE Net Income 2007–2011 The annual net income of General Electric for the period 2007–2011 could be 8 approximated by P ( t ) = 1.6 t 2 − 15 t + 46 billion dollars ( 2 ≤ t ≤ 6 ) , Where t is time in year since 2005. GE net income ($ billions) a. Compute P ' ( t ) . How fast was GE’s annual net income changing in 2008? (Be careful to give correct units of measurement.) b. According to the model, GE’s annual net income (A) increased at a faster and faster rate (B) increased at a slower and slower rate (C) decreased at a faster and faster rate (D) decreased at a slower and slower rate during the first 2 years shown (the interval [ 2 , 4 ] ). Justify your answer in two ways: geometrically, reasoning entirely from the graph, and algebraically, reasoning from the derivative of P . [ HINT: See Example 4.]
GE Net Income 2007–2011 The annual net income of General Electric for the period 2007–2011 could be 8 approximated by P ( t ) = 1.6 t 2 − 15 t + 46 billion dollars ( 2 ≤ t ≤ 6 ) , Where t is time in year since 2005. GE net income ($ billions) a. Compute P ' ( t ) . How fast was GE’s annual net income changing in 2008? (Be careful to give correct units of measurement.) b. According to the model, GE’s annual net income (A) increased at a faster and faster rate (B) increased at a slower and slower rate (C) decreased at a faster and faster rate (D) decreased at a slower and slower rate during the first 2 years shown (the interval [ 2 , 4 ] ). Justify your answer in two ways: geometrically, reasoning entirely from the graph, and algebraically, reasoning from the derivative of P . [ HINT: See Example 4.]
GE Net Income 2007–2011 The annual net income of General Electric for the period 2007–2011 could be 8 approximated by
P
(
t
)
=
1.6
t
2
−
15
t
+
46 billion dollars
(
2
≤
t
≤
6
)
,
Where t is time in year since 2005.
GE net income ($ billions)
a. Compute
P
'
(
t
)
. How fast was GE’s annual net income changing in 2008? (Be careful to give correct units of measurement.)
b. According to the model, GE’s annual net income
(A) increased at a faster and faster rate
(B) increased at a slower and slower rate
(C) decreased at a faster and faster rate
(D) decreased at a slower and slower rate during the first 2 years shown (the interval
[
2
,
4
]
). Justify your answer in two ways: geometrically, reasoning entirely from the graph, and algebraically, reasoning from the derivative of P. [HINT: See Example 4.]
An airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west
at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane?
428 mph
41°
50 mph
a. The ground speed of the airplane is
b. The bearing of the airplane is
mph.
south of west.
Rylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach
one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck
starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a
horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate
a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The
angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude
and its direction angle from the positive x-axis.
119 lb
20.2°
377 lb
a. The resultant force is
(Tip: omit degree notations from your answers; e.g. enter cos(45) instead of cos(45°))
b. It's magnitude is
lb.
c. It's angle from the positive x-axis is
Find a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14
and -3x - y + z = −21.
The equation of the plane is:
Chapter 4 Solutions
Student Solutions Manual for Waner/Costenoble's Applied Calculus, 7th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY