Concept explainers
Imports and exports: The following table presents the U.S. imports and exports (in billions of dollars) for each of 29 months.
- Compute the least-squares regression line for predicting exports (y) from imports (x).
- Compute the coefficient of determination.
- The months with the two lowest exports are January and February 2011 Remove these points and compute the least-squares regression line. Is the result noticeably different?
- Compute the coefficient of determination for the data set with January and February 2011 removed.
- Two economists decide to study the relationship between imports and exports. One uses data from January 2011 through May 2013 and the other used data from March 2011 through May 2013. For which data set will the proportion of variance explained by the least-squares regression line be greater?
(a)
>The least squares regression line for the given data set.
Answer to Problem 26E
Explanation of Solution
Given information:
The following table presents the U.S. imports and exports (in billions of dollars) for each of
months:
Concepts Used:
The equation for least-square regression line:
Where
The correlation coefficient of a data is given by:
Where,
The standard deviations are given by:
Calculation:
The mean of
The mean of
The data can be represented in tabular form as:
x | y | |||||
215.9 | 168.1 | -10.21724 | 104.39202 | -13.18276 | 173.78512 | 134.69143 |
211.8 | 166.6 | -14.31724 | 204.98340 | -14.68276 | 215.58340 | 210.21660 |
217.7 | 174.3 | -8.41724 | 70.84995 | -6.98276 | 48.75892 | 58.77556 |
218.1 | 175.9 | -8.01724 | 64.27616 | -5.38276 | 28.97409 | 43.15488 |
223.6 | 176.2 | -2.51724 | 6.33650 | -5.08276 | 25.83444 | 12.79453 |
224.2 | 173.2 | -1.91724 | 3.67581 | -8.08276 | 65.33099 | 15.49660 |
224.9 | 179.5 | -1.21724 | 1.48168 | -1.78276 | 3.17823 | 2.17005 |
224.6 | 179.9 | -1.51724 | 2.30202 | -1.38276 | 1.91202 | 2.09798 |
225.7 | 181.2 | -0.41724 | 0.17409 | -0.08276 | 0.00685 | 0.03453 |
226.6 | 180.5 | 0.48276 | 0.23306 | -0.78276 | 0.61271 | -0.37788 |
226.1 | 178.3 | -0.01724 | 0.00030 | -2.98276 | 8.89685 | 0.05143 |
230.5 | 179.1 | 4.38276 | 19.20857 | -2.18276 | 4.76444 | -9.56650 |
230.9 | 179.5 | 4.78276 | 22.87478 | -1.78276 | 3.17823 | -8.52650 |
225.8 | 182.1 | -0.31724 | 0.10064 | 0.81724 | 0.66788 | -0.25926 |
234.3 | 186.5 | 8.18276 | 66.95754 | 5.21724 | 27.21961 | 42.69143 |
230.9 | 184.3 | 4.78276 | 22.87478 | 3.01724 | 9.10375 | 14.43074 |
230.5 | 184.2 | 4.38276 | 19.20857 | 2.91724 | 8.51030 | 12.78556 |
227.6 | 185.2 | 1.48276 | 2.19857 | 3.91724 | 15.34478 | 5.80832 |
226.8 | 183.4 | 0.68276 | 0.46616 | 2.11724 | 4.48271 | 1.44556 |
226.1 | 182.1 | -0.01724 | 0.00030 | 0.81724 | 0.66788 | -0.01409 |
228.4 | 186.8 | 2.28276 | 5.21099 | 5.51724 | 30.43995 | 12.59453 |
225.3 | 182.7 | -0.81724 | 0.66788 | 1.41724 | 2.00857 | -1.15823 |
231.6 | 185.2 | 5.48276 | 30.06064 | 3.91724 | 15.34478 | 21.47729 |
227.0 | 188.7 | 0.88276 | 0.77926 | 7.41724 | 55.01547 | 6.54763 |
229.4 | 186.7 | 3.28276 | 10.77650 | 5.41724 | 29.34650 | 17.78350 |
231.0 | 187.1 | 4.88276 | 23.84133 | 5.81724 | 33.84030 | 28.40419 |
222.3 | 185.2 | -3.81724 | 14.57133 | 3.91724 | 15.34478 | -14.95306 |
227.7 | 187.6 | 1.58276 | 2.50512 | 6.31724 | 39.90754 | 9.99867 |
232.1 | 187.1 | 5.98276 | 35.79340 | 5.81724 | 33.84030 | 34.80315 |
|
|
|
|
|
Hence, the standard deviation is given by:
And,
Consider,
Putting the values in the formula,
Putting the values to obtain b1,
Putting the values to obtain b0,
Hence, the least-square regression line is given by:
Therefore, the least squares regression line for the given data set is
(b)
>The coefficient of determination.
Answer to Problem 26E
Explanation of Solution
Given information:
Same as part
Calculation:
From part
The coefficient of determination is given by:
Where
Putting the values to obtain Coefficient of Determination,
Therefore, the Coefficient of Determination is
(c)
>The least squares regression line for the given data set by excluding the outlier points and to check if the result is noticeably different.
Answer to Problem 26E
The result is noticeably different.
Explanation of Solution
Given information:
Same as part
The months with two lowest exports are January and February
Concepts used:
The equation for least-square regression line:
Where
The correlation coefficient of a data is given by:
Where,
The standard deviations are given by:
Calculation:
The months with two lowest exports are January and February
Excluding the outlier,
The mean of
The mean of
The data can be represented in tabular form as:
x | y | |||||
217.7 | 174.3 | -8.41724 | 70.84995 | -6.98276 | 48.75892 | 58.77556 |
218.1 | 175.9 | -8.01724 | 64.27616 | -5.38276 | 28.97409 | 43.15488 |
223.6 | 176.2 | -2.51724 | 6.33650 | -5.08276 | 25.83444 | 12.79453 |
224.2 | 173.2 | -1.91724 | 3.67581 | -8.08276 | 65.33099 | 15.49660 |
224.9 | 179.5 | -1.21724 | 1.48168 | -1.78276 | 3.17823 | 2.17005 |
224.6 | 179.9 | -1.51724 | 2.30202 | -1.38276 | 1.91202 | 2.09798 |
225.7 | 181.2 | -0.41724 | 0.17409 | -0.08276 | 0.00685 | 0.03453 |
226.6 | 180.5 | 0.48276 | 0.23306 | -0.78276 | 0.61271 | -0.37788 |
226.1 | 178.3 | -0.01724 | 0.00030 | -2.98276 | 8.89685 | 0.05143 |
230.5 | 179.1 | 4.38276 | 19.20857 | -2.18276 | 4.76444 | -9.56650 |
230.9 | 179.5 | 4.78276 | 22.87478 | -1.78276 | 3.17823 | -8.52650 |
225.8 | 182.1 | -0.31724 | 0.10064 | 0.81724 | 0.66788 | -0.25926 |
234.3 | 186.5 | 8.18276 | 66.95754 | 5.21724 | 27.21961 | 42.69143 |
230.9 | 184.3 | 4.78276 | 22.87478 | 3.01724 | 9.10375 | 14.43074 |
230.5 | 184.2 | 4.38276 | 19.20857 | 2.91724 | 8.51030 | 12.78556 |
227.6 | 185.2 | 1.48276 | 2.19857 | 3.91724 | 15.34478 | 5.80832 |
226.8 | 183.4 | 0.68276 | 0.46616 | 2.11724 | 4.48271 | 1.44556 |
226.1 | 182.1 | -0.01724 | 0.00030 | 0.81724 | 0.66788 | -0.01409 |
228.4 | 186.8 | 2.28276 | 5.21099 | 5.51724 | 30.43995 | 12.59453 |
225.3 | 182.7 | -0.81724 | 0.66788 | 1.41724 | 2.00857 | -1.15823 |
231.6 | 185.2 | 5.48276 | 30.06064 | 3.91724 | 15.34478 | 21.47729 |
227.0 | 188.7 | 0.88276 | 0.77926 | 7.41724 | 55.01547 | 6.54763 |
229.4 | 186.7 | 3.28276 | 10.77650 | 5.41724 | 29.34650 | 17.78350 |
231.0 | 187.1 | 4.88276 | 23.84133 | 5.81724 | 33.84030 | 28.40419 |
222.3 | 185.2 | -3.81724 | 14.57133 | 3.91724 | 15.34478 | -14.95306 |
227.7 | 187.6 | 1.58276 | 2.50512 | 6.31724 | 39.90754 | 9.99867 |
232.1 | 187.1 | 5.98276 | 35.79340 | 5.81724 | 33.84030 | 34.80315 |
|
|
|
|
|
Hence, the standard deviation is given by:
And,
Consider,
Putting the values in the formula,
Putting the values to obtain
Putting the values to obtain
Hence, the least-square regression line is given by:
Therefore, the least squares regression line for the given data set by removing the outlier is
Hence the result is noticeably different.
(d)
>The coefficient of determination for the data set with the outlier removed.
Answer to Problem 26E
Explanation of Solution
Given information:
Same as part
The months with two lowest exports are January and February
Calculation:
From part
The coefficient of determination is given by:
Where
Plugging the values to obtain Coefficient of Determination,
Therefore, the Coefficient of Determination is
(e)
>To calculate:
To check for which data set will the proportion of variance explained by the least-squares regression line be greater.
Answer to Problem 26E
The proportion of variance explained by the least-squares regression line is greater for the data from January
Explanation of Solution
Given information:
Same as part
Two economists decide to study the relationship between imports and exports. One uses data from January
Calculation:
From previous parts of this exercise,
The Coefficient of Determination is
The Coefficient of Determination without the outliers is
Here the coefficient of determination decreased without the outliers.
Hence, the proportion of variance explained is less without the outlier.
Therefore, the proportion of variance explained by the least-squares regression line is greater for the data from January
Want to see more full solutions like this?
Chapter 4 Solutions
Elementary Statistics (Text Only)
- Can you help me understand this analysis? A 95.7% confidence interval is shown for the intention-to-treat analysis (accounting for alpha spending in interim analyses), and 95% confidence intervals are shown for the other two analyses. The widths of the confidence intervals have not been adjusted for multiplicity. The dashed line indicates the noninferiority margin of 4 percentage points.arrow_forwardTitle: Analyzing Customer Satisfaction for UnileverAs a member of Unilever's Customer Experience Management team, you are responsible forevaluating customer satisfaction levels and monitoring competitive moves. This case studyinvolves analyzing satisfaction data to test two key hypotheses about Unilever's performancerelative to its main competitor, Procter & Gamble (P&G).Unilever’s leadership team has emphasized the importance of customer satisfaction inmaintaining competitive advantage and market leadership. As part of this initiative, yourteam regularly monitors satisfaction scores and benchmarks them against competitors likeP&G.You are tasked with analyzing the provided dataset to answer the following questions:1. Does Unilever’s average customer satisfaction score meet the minimum threshold of2. 75%?Is there no significant difference between Unilever’s overall average satisfaction scoreand P&G’s average satisfaction score?arrow_forwardNeed help answering wuestionarrow_forward
- The following table shows a data set containing information for 25 of the shadow stocks tracked by the American Association of Individual Investors (aaii.com, February 2002). Shadow stocks are common stocks of smaller companies that are not closely followed by Wall Street analysts. Click on the datafile logo to reference the data. DATA file Company DeWolfe Companies Exchange Ticker Symbol Market Cap ($ millions) Price/ Gross Profit Earnings Ratio Margin (%) AMEX DWL 36.4 8.4 36.7 North Coast Energy OTC NCEB 52.5 6.2 59.3 Hansen Natural Corp. OTC HANS 41.1 14.6 44.8 MarineMax, Inc. NYSE HZO 111.5 7.2 23.8 Nanometrics Incorporated OTC NANO 228.6 38.0 53.3 TeamStaff, Inc. OTC TSTF 92.1 33.5 4.1 Environmental Tectonics AMEX ETC 51.1 35.8 35.9 Measurement Specialties AMEX MSS 101.8 26.8 37.6 SEMCO Energy, Inc. NYSE SEN 193.4 18.7 23.6 Party City Corporation OTC PCTY 97.2 15.9 36.4 Embrex, Inc. OTC EMBX 136.5 18.9 59.5 Tech/Ops Sevcon, Inc. AMEX ΤΟ 23.2 20.7 35.7 ARCADIS NV OTC ARCAF 173.4…arrow_forwardThe following table shows a data set containing information for 25 of the shadow stocks tracked by the American Association of Individual Investors (aaii.com, February 2002). Shadow stocks are common stocks of smaller companies that are not closely followed by Wall Street analysts. Click on the datafile logo to reference the data. DATA file Company DeWolfe Companies Exchange AMEX Ticker Symbol Market Cap Price/ Gross Profit Earnings Margin ($ millions) Ratio (%) DWL 36.4 8.4 36.7 North Coast Energy OTC NCEB 52.5 6.2 59.3 Hansen Natural Corp. OTC HANS 41.1 14.6 44.8 MarineMax, Inc. NYSE HZO 111.5 7.2 23.8 Nanometrics Incorporated OTC NANO 228.6 38.0 53.3 TeamStaff, Inc. OTC TSTF 92.1 33.5 4.1 Environmental Tectonics AMEX ETC 51.1 35.8 35.9 Measurement Specialties AMEX MSS 101.8 26.8 37.6 SEMCO Energy, Inc. NYSE SEN 193.4 18.7 23.6 Party City Corporation OTC PCTY 97.2 15.9 36.4 Embrex, Inc. OTC EMBX 136.5 18.9 59.5 Tech/Ops Sevcon, Inc. AMEX ΤΟ 23.2 20.7 35.7 ARCADIS NV OTC ARCAF 173.4…arrow_forwardThe following data show the year to date percent change (YTD % Change) for 30 stock-market indexes from around the word (The Wall Street Journal, August 26, 2013). a. What index has the largest positive YTD % Change? Round your answer to once decimal place. index with a YTD % Change of % b. Using a class width of 5 beginning with -20 and going to 40, develop a frequency distribution for the data. YTD % Change Frequency -20 - -15 -15 - -10 -10 - -5 -5 - 0 0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 30 - 35 c. 1. 2. 3. 4.arrow_forward
- The following data show the year to date percent change (YTD % Change) for 30 stock-market indexes from around the word (The Wall Street Journal, August 26, 2013). Click on the datafile logo to reference the data. DATA file Country Australia Index S&P/ASX200 YTD % Change 10.2 Belgium Bel-20 12.6 Brazil São Paulo Bovespa -14.4 Canada S&P/TSX Comp 2.6 Chile Santiago IPSA -16.3 China Shanghai Composite -9.3 Eurozone EURO Stoxx 10.0 France CAC 40 11.8 Germany DAX 10.6 Hong Kong Hang Seng -3.5 India S&P BSE Sensex -4.7 Israel Tel Aviv 1.3 Italy FTSE MIB 6.6 Japan Nikkei 31.4 Mexico IPC All-Share -6.4 Netherlands AEX 9.3 Singapore Straits Times -2.5 South Korea Kospi -6.4 Spain IBEX 35 6.4 Sweden Switzerland SX All Share 13.8 Swiss Market 17.4 Taiwan Weighted 2.3 U.K. FTSE 100 10.1 U.S. S&P 500 16.6 U.S. DJIA 14.5 U.S. Dow Jones Utility 6.6 U.S. Nasdaq 100 17.4 U.S. Nasdaq Composite 21.1 World DJ Global ex U.S. 4.2 World DJ Global Index 9.9 a. What index has the largest positive YTD %…arrow_forwardDescribe a three step process you choose to determine how many elementary schools there are in the city of 5 million people.arrow_forwardQuiz: Exam 1 (Ch 1-4) z Scores Table-3.pdf x + edu/courses/308627/quizzes/2442507/take/questions/48957332 Canvas Hall It browser 5 Connect Set as default incorrect. • This exam is NOT resumable. Meaning, once you start the exam, you must complete it in its entirety. Any blank questions will be marked as By taking this exam, you agree to adhere to the academic integrity standards, which consist of NOT cheating in any way. To get the highest possible score, you are encouraged to review your notes before taking the exam. You may use your notes during the exam, but note that you should be familiar with the concepts and formulas before taking exam. z Scores Table.pdf Question 3 3 pts Here is a data from a survey asking young children how many hours they spend playing video games. The researchers reported the percent of boys and girls who played no games, less than 1 hour per day, 1-3 hours per day, or greater than 3 hours per day. The most common number of hours per day that boys played is…arrow_forward
- Write a Regression summary explaining significance of mode, explaining regression coefficients, significance of the independent variables, R and R square. Premiums earned Net income Dividends Underwriting Gain/ Loss 30.2 1.6 0.6 0.1 47.2 0.6 0.7 -3.6 92.8 8.4 1.8 -1.5 95.4 7.6 2 -4 100.4 6.3 2.2 -8.1 104.9 6.3 2.4 -10.8 113.2 2.2 2.3 -18.2 130.3 3.0 2.4 -21.4 161.9 13.5 2.3 -12.8 182.5 14.9 2.9 -5.9 193.3 11.7 2.9 -7.6arrow_forward1- Let A = {A1, A2, ...), in which A, A, = 0, when i j. a) Is A a π-system? If not, which element(s) should be added to A to become a π-system? b) Prove that σ(A) consists of the finite or countable unions of elements of A; i.c., A E σ(A) if and only if there exists finite or countable sequence {n} such that A = U₁An (Hint: Let F be such class; prove that F is a σ-filed containing A.) c) Let p ≥ 0 be a sequence of non-negative real numbers with Σip₁ = 1. Using p₁'s, how do you construct a probability measure on σ(A)? (Hint: use extension theorem.) 2- Construct an example for which P(lim sup A,) = 1 and P(lim inf An) = 0.arrow_forwardIn a town with 5000 adults, a sample of 50 is selected using SRSWOR and asked their opinion of a proposed municipal project; 30 are found to favor it and 20 oppose it. If, in fact, the adults of the town were equally divided on the proposal, what would be the probability of observing what has been observed? Approximate using the Binomial distribution. Compare this with the exact probability which is 0.0418.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning