Concept explainers
To calculate: The
Answer to Problem 12CS
0.3275
Explanation of Solution
Given information:
A model in which previous values of a variable are used to predict future values of the same variable is called an autoregressive model. The following table presents the data needed to fit this model.
Year | This Year’sUnemployment | Next Year’sUnemployment |
1985 | 7.2 | 7.0 |
1986 | 7.0 | 6.2 |
1987 | 6.2 | 5.5 |
1988 | 5.5 | 5.3 |
1989 | 5.3 | 5.6 |
1990 | 5.6 | 6.8 |
1991 | 6.8 | 7.5 |
1992 | 7.5 | 6.9 |
1993 | 6.9 | 6.1 |
1994 | 6.1 | 5.6 |
1995 | 5.6 | 5.4 |
1996 | 5.4 | 4.9 |
1997 | 4.9 | 4.5 |
1998 | 4.5 | 4.2 |
1999 | 4.2 | 4.0 |
2000 | 4.0 | 4.7 |
2001 | 4.7 | 5.8 |
2002 | 5.8 | 6.0 |
2003 | 6.0 | 5.5 |
2004 | 5.5 | 5.1 |
2005 | 5.1 | 4.6 |
2006 | 4.6 | 4.6 |
2007 | 4.6 | 5.8 |
2008 | 5.8 | 9.3 |
2009 | 9.3 | 9.6 |
2010 | 9.6 | 8.9 |
2011 | 8.9 | 8.1 |
Formula Used:
The
Where,
The standard deviations are given by:
The mean of x is given by:
The mean of y is given by:
Calculation:
The mean of x is given by:
The mean of y is given by:
The data can be represented in tabular form as:
x | y | ||||
7.2 | 7.0 | 1.17778 | 1.38716 | 0.94444 | 0.89198 |
7.0 | 6.2 | 4.12963 | 17.05384 | 0.14444 | 0.02086 |
6.2 | 5.5 | 3.32963 | 11.08643 | -0.55556 | 0.30864 |
5.5 | 5.3 | 2.62963 | 6.91495 | -0.75556 | 0.57086 |
5.3 | 5.6 | 2.42963 | 5.90310 | -0.45556 | 0.20753 |
5.6 | 6.8 | 2.72963 | 7.45088 | 0.74444 | 0.55420 |
6.8 | 7.5 | 3.92963 | 15.44199 | 1.44444 | 2.08642 |
7.5 | 6.9 | 4.62963 | 21.43347 | 0.84444 | 0.71309 |
6.9 | 6.1 | 4.02963 | 16.23791 | 0.04444 | 0.00198 |
6.1 | 5.6 | 3.22963 | 10.43051 | -0.45556 | 0.20753 |
5.6 | 5.4 | 2.72963 | 7.45088 | -0.65556 | 0.42975 |
5.4 | 4.9 | 2.52963 | 6.39903 | -1.15556 | 1.33531 |
4.9 | 4.5 | 2.02963 | 4.11940 | -1.55556 | 2.41975 |
4.5 | 4.2 | 1.62963 | 2.65569 | -1.85556 | 3.44309 |
4.2 | 4.0 | 1.32963 | 1.76791 | -2.05556 | 4.22531 |
4.0 | 4.7 | 1.12963 | 1.27606 | -1.35556 | 1.83753 |
4.7 | 5.8 | 1.82963 | 3.34754 | -0.25556 | 0.06531 |
5.8 | 6.0 | 2.92963 | 8.58273 | -0.05556 | 0.00309 |
6.0 | 5.5 | 3.12963 | 9.79458 | -0.55556 | 0.30864 |
5.5 | 5.1 | 2.62963 | 6.91495 | -0.95556 | 0.91309 |
5.1 | 4.6 | 2.22963 | 4.97125 | -1.45556 | 2.11864 |
4.6 | 4.6 | 1.72963 | 2.99162 | -1.45556 | 2.11864 |
4.6 | 5.8 | 1.72963 | 2.99162 | -0.25556 | 0.06531 |
5.8 | 9.3 | 2.92963 | 8.58273 | 3.24444 | 10.52642 |
9.3 | 9.6 | 6.42963 | 41.34014 | 3.54444 | 12.56309 |
9.6 | 8.9 | 6.72963 | 45.28791 | 2.84444 | 8.09086 |
8.9 | 8.1 | 6.02963 | 36.35643 | 2.04444 | 4.17975 |
Hence, the standard deviation is given by:
And,
Consider,
Hence, the table for calculating coefficient of correlation is given by:
x | y | |||
7.2 | 7.0 | 1.17778 | 0.94444 | 1.11235 |
7.0 | 6.2 | 4.12963 | 0.14444 | 0.59650 |
6.2 | 5.5 | 3.32963 | -0.55556 | -1.84979 |
5.5 | 5.3 | 2.62963 | -0.75556 | -1.98683 |
5.3 | 5.6 | 2.42963 | -0.45556 | -1.10683 |
5.6 | 6.8 | 2.72963 | 0.74444 | 2.03206 |
6.8 | 7.5 | 3.92963 | 1.44444 | 5.67613 |
7.5 | 6.9 | 4.62963 | 0.84444 | 3.90947 |
6.9 | 6.1 | 4.02963 | 0.04444 | 0.17909 |
6.1 | 5.6 | 3.22963 | -0.45556 | -1.47128 |
5.6 | 5.4 | 2.72963 | -0.65556 | -1.78942 |
5.4 | 4.9 | 2.52963 | -1.15556 | -2.92313 |
4.9 | 4.5 | 2.02963 | -1.55556 | -3.15720 |
4.5 | 4.2 | 1.62963 | -1.85556 | -3.02387 |
4.2 | 4.0 | 1.32963 | -2.05556 | -2.73313 |
4.0 | 4.7 | 1.12963 | -1.35556 | -1.53128 |
4.7 | 5.8 | 1.82963 | -0.25556 | -0.46757 |
5.8 | 6.0 | 2.92963 | -0.05556 | -0.16276 |
6.0 | 5.5 | 3.12963 | -0.55556 | -1.73868 |
5.5 | 5.1 | 2.62963 | -0.95556 | -2.51276 |
5.1 | 4.6 | 2.22963 | -1.45556 | -3.24535 |
4.6 | 4.6 | 1.72963 | -1.45556 | -2.51757 |
4.6 | 5.8 | 1.72963 | -0.25556 | -0.44202 |
5.8 | 9.3 | 2.92963 | 3.24444 | 9.50502 |
9.3 | 9.6 | 6.42963 | 3.54444 | 22.78947 |
9.6 | 8.9 | 6.72963 | 2.84444 | 19.14206 |
8.9 | 8.1 | 6.02963 | 2.04444 | 12.32724 |
Plugging the values in the formula,
Therefore, the correlation coefficient for the given data is 0.3275
Want to see more full solutions like this?
Chapter 4 Solutions
Elementary Statistics (Text Only)
- 30. An individual who has automobile insurance from a certain company is randomly selected. Let Y be the num- ber of moving violations for which the individual was cited during the last 3 years. The pmf of Y isy | 1 2 4 8 16p(y) | .05 .10 .35 .40 .10 a.Compute E(Y).b. Suppose an individual with Y violations incurs a surcharge of $100Y^2. Calculate the expected amount of the surcharge.arrow_forward24. An insurance company offers its policyholders a num- ber of different premium payment options. For a ran- domly selected policyholder, let X = the number of months between successive payments. The cdf of X is as follows: F(x)=0.00 : x < 10.30 : 1≤x<30.40 : 3≤ x < 40.45 : 4≤ x <60.60 : 6≤ x < 121.00 : 12≤ x a. What is the pmf of X?b. Using just the cdf, compute P(3≤ X ≤6) and P(4≤ X).arrow_forward59. At a certain gas station, 40% of the customers use regular gas (A1), 35% use plus gas (A2), and 25% use premium (A3). Of those customers using regular gas, only 30% fill their tanks (event B). Of those customers using plus, 60% fill their tanks, whereas of those using premium, 50% fill their tanks.a. What is the probability that the next customer will request plus gas and fill the tank (A2 B)?b. What is the probability that the next customer fills the tank?c. If the next customer fills the tank, what is the probability that regular gas is requested? Plus? Premium?arrow_forward
- 38. Possible values of X, the number of components in a system submitted for repair that must be replaced, are 1, 2, 3, and 4 with corresponding probabilities .15, .35, .35, and .15, respectively. a. Calculate E(X) and then E(5 - X).b. Would the repair facility be better off charging a flat fee of $75 or else the amount $[150/(5 - X)]? [Note: It is not generally true that E(c/Y) = c/E(Y).]arrow_forward74. The proportions of blood phenotypes in the U.S. popula- tion are as follows:A B AB O .40 .11 .04 .45 Assuming that the phenotypes of two randomly selected individuals are independent of one another, what is the probability that both phenotypes are O? What is the probability that the phenotypes of two randomly selected individuals match?arrow_forward53. A certain shop repairs both audio and video compo- nents. Let A denote the event that the next component brought in for repair is an audio component, and let B be the event that the next component is a compact disc player (so the event B is contained in A). Suppose that P(A) = .6 and P(B) = .05. What is P(BA)?arrow_forward
- 26. A certain system can experience three different types of defects. Let A;(i = 1,2,3) denote the event that the sys- tem has a defect of type i. Suppose thatP(A1) = .12 P(A) = .07 P(A) = .05P(A, U A2) = .13P(A, U A3) = .14P(A2 U A3) = .10P(A, A2 A3) = .011Rshelfa. What is the probability that the system does not havea type 1 defect?b. What is the probability that the system has both type 1 and type 2 defects?c. What is the probability that the system has both type 1 and type 2 defects but not a type 3 defect? d. What is the probability that the system has at most two of these defects?arrow_forwardThe following are suggested designs for group sequential studies. Using PROCSEQDESIGN, provide the following for the design O’Brien Fleming and Pocock.• The critical boundary values for each analysis of the data• The expected sample sizes at each interim analysisAssume the standardized Z score method for calculating boundaries.Investigators are evaluating the success rate of a novel drug for treating a certain type ofbacterial wound infection. Since no existing treatment exists, they have planned a one-armstudy. They wish to test whether the success rate of the drug is better than 50%, whichthey have defined as the null success rate. Preliminary testing has estimated the successrate of the drug at 55%. The investigators are eager to get the drug into production andwould like to plan for 9 interim analyses (10 analyzes in total) of the data. Assume thesignificance level is 5% and power is 90%.Besides, draw a combined boundary plot (OBF, POC, and HP)arrow_forwardPlease provide the solution for the attached image in detailed.arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning