MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 42, Problem 42.14E
The vibrational and rotational energies of the CO molecule are given by Eq. (42.9). Calculate the wavelength of the photon absorbed by CO in each of these vibration-rotation transitions: (a) n = 0, l = 2 → n = 1, l = 3; (b) n = 0, l = 3 → n = 1, l = 2; (c) n =0, l = 4 → n= 1, l = 3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The vibrational frequency of an HF molecule is 8.72 x 1013 Hz and the reduced mass of the
molecule is 1.589 x 1027 kg. What is the ground state vibrational energy of an HF molecule? (1 eV
= 1.60 x 10-19 J, h = 6.626 x 10 34 J.s)
%3D
0.18 ev
O 2.4 ev
O 0.12 ev
O 1.2 ev
O 3 ev
Clear my choice
10 search
A hypothetical NH molecule makes a rotational-level transition from I= 3 to l = 1 and gives off
a photon of wavelength 1.740 nm in doing so.
What is the separation between the two atoms in this molecule if we model them as point
masses? The mass of hydrogen is 1.67 * 1 kg, and the mass of nitrogen is
2.33 * 10-26 kg.
5.59*10^(-13) m
O 5.62*10^(-13) m
5.59*10^(-11} m
5.59*10^(-12)m
6.59*10^(-13) m
A hypothetical NH molecule makes a rotational-level transition from
\= 3 to l = 1 and gives off a photon of wavelength 1.800 nm in doing
SO.
What is the separation between the two atoms in this molecule if we
model them as point masses? The mass of hydrogen is
kg.
1.67 * 10-2 kg, and the mass of nitrogen is 2.33 * 10 26
a)
6.52*10^{-13}m
b)
5.69*10^{-13}m
c) 5.70*10^{-14} m
d)
5.69*10^{-12}m
e)
5.62*10^{-13}m
Chapter 42 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
The height of a certain hill (in feet) is given by , where y is the distance (in miles) north, x the distance e...
Introduction to Electrodynamics
(III) An object of mass m is constrained to move in a circle of radius r. Its tangential acceleration as a func...
Physics for Scientists and Engineers with Modern Physics
Write each number in scientific notation.
2. 798
Applied Physics (11th Edition)
Describe the functions of each of the four lobes of the cerebrum.
Conceptual Integrated Science
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hypothetical NH molecule makes a rotational-level transition from l = 3 to l= 1 and gives off a photon of wavelength 1.780 nm in doing so. What is the separation between the two atoms in this molecule if we model them as point masses? (The mass of hydrogen is 1.67 * 10-27 kg, and the mass of nitrogen is 2.33 * 10-26 kg).arrow_forwardCalculate the radius of a nickel atom in cm, given that Ni has an FCC crystal structure, a density of 7.982 g/cm³, and an atomic weight of 58.69 g/mol.arrow_forwardGraph below shows the electron occupancy probability P(E) as a function of energy for Bismuth (mBi = 3.47 × 10-25 kg) at the temperature T = 0 K. What is the number of conduction electrons per unit volume for Bismuth? 1 1 2 3 4 5 6 7 8 E (ev) P(E)arrow_forward
- A hypothetical NH molecule makes a rotational-level transition from l=3 to l=1 and gives off a photon of wavelength 1.800 nm in doing so. What is the seperation between the two atoms in this molecule if we model them as point masses? The mass of hydrogen 1.67 * 10^-27 kg, and the mass of nitrogen is 2.33 * 10^-26 kg.arrow_forwardThe mass of the most common silicon atom is 4.646 * 10-26 kg, and the mass of the most common oxygen atom is 2.656 * 10-26 kg. When a molecule of silicon monoxide (SiO) makes a transition between the l = 1 and l = 0 rotational levels, it emits a photon of wavelength 6.882 mm. Find the distance between the Si and O nuclei.arrow_forward(b): the potential energy of a diatomic molecule is given by U = B where A and B are constants and r is the separation A r12 r6 distance between the atoms. For the H2 molecule, take A = 0.124 x 10-120 eV. m² and B = 1.488 × 10-60 eV . m°. Find the separation distance at which the energy of the molecule is a %3D minimum.arrow_forward
- If a sodium chloride (NaCl) molecule could undergo an n S n - 1 vibrational transition with no change in rotational quantum number, a photon with wavelength 20.0 mm would be emitted. The mass of a sodium atom is 3.82 * 10-26 kg, and the mass of a chlorine atom is 5.81 * 10-26 kg. Calculate the force constant k′ for the interatomic force in NaCl.arrow_forwardAssume the distance between the protons in the H2 molecule is 0.750 x 10-10 m. (a) Find the energy of the first excited rotational state, with J = 1. (b) Find the wavelength of radiation emitted in the transition from J = 1 to J = 0.arrow_forward3arrow_forward
- An H2 molecule is in its vibrational and rotational ground states. It absorbs aphoton of wavelength 2.2112 µm and makes a transition to the ν = 1, J = 1energy level. It then drops to the ν = 0, J = 2 energy level while emitting6/9SIX1011a photon of wavelength 2.4054 µm. Calculate (i) the moment of inertia of theH2 molecule about an axis through its centre of mass and perpendicular tothe H − H bond, (ii) the vibrational frequency of the H2 molecule, and (iii) theequilibrium separation distance for this molecule.arrow_forwardK:54)arrow_forwardThe energy gap of an element is given as 5.9x10 eV. Calculate the intrinsic coherent length if V =5.82×10° m/s. (a) 5.9 m (b) 1.2 Lm (c) 9.5 m (d) 2.1 umarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY