MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 42, Problem 42.37P
(a) For the sodium chloride molecule (NaCl) discussed at the beginning of Section 42.1, what is the maximum separation of the ions for stability if they may be regarded as point charges? That is, what is the largest separation for which the energy of an Na+ ion and a Cl− ion, calculated in this model, is lower than the energy of the two separate atoms Na and Cl? (b) Calculate this distance for the potassium bromide molecule, described in Exercise 42.2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Estimate kBT at room temperature, and convert
this energy into electronvolts (eV). Using this result, answer the following:
(a) Would you expect hydrogen atoms to be ionized
at room temperature? (The binding energy of an
electron in a hydrogen atom is 13.6 eV.)
(b) Would you expect the rotational energy levels
of diatomic molecules to be excited at room temperature? (It costs about 10−4 eV to promote such
a system to an excited rotational energy level.)
Estimate kBT at room temperature, and convert this energy into electronvolts (eV). Using this result, answer the following:
(a) Would you expect hydrogen atoms to be ionized at room temperature? (The binding energy of an electron in a hydrogen atom is 13.6 eV.)
(b) Would you expect the rotational energy levels of diatomic molecules to be excited at room temperature? (It costs about 10-4 eV to promote such a system to an excited rotational energy level.)
The frequency of vibration of the H2 molecule is 1.32*1014 Hz. (a) find the relative populations of the v=0,1,2,3 and 4 vibrational states at 5000K (b) can the populations of the v=2 and v=3 states ever be equal? if so, at what temperature does this occur.
Chapter 42 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Analyzing crystal diffraction is intimately tied to the various different geometries in which the atoms can be ...
Modern Physics
23. A kid at the junior high cafeteria wants to propel an empty milk carton along a lunch table by hitting it w...
College Physics: A Strategic Approach (4th Edition)
30. What happens to the polarity of oxygen atoms as they transform from molecular oxygen, O2, into water molecu...
Conceptual Physical Science (6th Edition)
Give an example of a process in which no heat is added to a system, but its temperature increases. Then give an...
An Introduction to Thermal Physics
Classical physics is a good approximation to modern physics under certain circumstances. What are they?
College Physics
1. A sprinter crosses the finish line of a race. The roar of the crowd in front approaches her at a speed of 35...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- please asaparrow_forward(b): the potential energy of a diatomic molecule is given by U = B where A and B are constants and r is the separation A r12 r6 distance between the atoms. For the H2 molecule, take A = 0.124 x 10-120 eV. m² and B = 1.488 × 10-60 eV . m°. Find the separation distance at which the energy of the molecule is a %3D minimum.arrow_forwardThe total energy of the ion-hydrogen molecule is equal to -16.3 eV for the equilibrium internuclear distance equal to 1.06 A. Calculate: a) The electrostatic repulsion energy between the nuclei, in eV. b) The contribution of electronic energy, in eV. c) The total energy of the molecule, in eV. d) The binding energy, in kJ mol-1. Data: (epsilon)0 = 8.854x10-12 C2 N-1 m-2; elemental electric charge e = 1.602x10-19 C; energy of the H atom in the ground state = - 13.6 eV; NA = 6.022x1023 mol-1arrow_forward
- When the ions at their equilibrium interionic separation, the force of attraction between a divalent (valency of 2) cation and a monovalent (valency of 1) anion is 7.32 × 10−9 N. If the ionic radius of the cation is 0.05 nm, what is the anion radius (nm)? Round your result to 2 decimal place.arrow_forwardA silicon n+-p-n transistor has impurity concentrations of 1019, 1018, and 1017 cm 3 in the emitter, base, and collector, respectively. Calculate the collector current density, Jc in the transistor with VF = 0.2V and neutral base width equal to 5 x 103 cm. Next, find the collector current density, Jc for the 2nd design nt-p-n transistor that the neutral base width has been decreased by 20%.arrow_forwardSuppose the distance between the two atoms is equal to the equilibrium distance found in part A. What minimum energy must be added to the molecule to dissociate it-that is, to separate the two atoms to an infinite distance apart? This is called the dissociation energy of the molecule. For the molecule CO, the equilibrium distance between the carbon and oxygen atoms is 1.13×10−10m and the dissociation energy is 1.54×10−18J per molecule. Find the value of the constant a. Find the value of the constant b.arrow_forward
- The maximum wavelength of light that a certain silicon photocell can detect is 1.11 mm. (a) What is the energy gap (in electron volts) between the valence and conduction bands for this photocell? (b) Explain why pure silicon is opaque.arrow_forwardLinear ionic crystal. Consider a line of 2N ions of alternating charge ±q with a repulsive potential energy A/R" between nearest neighbors. (a) Show that at the equilibrium separation 2Nq² In 2/ (CGS) U(R,) = %3D - Ro (b) Let the crystal be compressed so that Ro→ R,(1 – 8). Show that the work done in compressing a unit length of the crystal has the leading term C8², where (CGS) (n – 1)q² In 2 C = Ro To obtain the results in SI, replace q by q*/4TTE9. Note: We should not expect to ob- tain this result from the expression for U(Ro), but we must use the complete expres-arrow_forwardThe ionic crystal of NaCl has an fcc structure as shown below with the position of the Cl atom located at : (0 0 0); (½ ½ 0); ( ½ 0 %) and (0 ½) and Na atom is located at : (½ ½½) + fcc translation. The following are the physical data of NaCl: - Ionic radius Na = 0.98 A, Cl ion radius 1.81 A Atomic mass of Na = 22.99 amu, Atomic mass of Cl = 35.45 amu NaCl bulk modulus = 2.40 x 1010 N/m - Madelung's constant = 1.75 Young's modulus in the direction [100] = 5 x 1010 Nm-2 Debye temperature = 281 K - State the structural factors of NaCl, F in fNa and fCl (f = atomic scattering factor). Also determine the condition (h k 1) so that the value of F = 0.arrow_forward
- A sample of copper has a mass of 10.68 g when measured in air. It has a mass of 9.47 g when measured in water. Answer these three questions: How many atoms are in the sample? What is the simple volume of the space including and surrounding each atom? Assume the atoms are evenly distributed throughout the sample. That is no FCC, BCC, or HCP crystal structure. What is the diameter of each atom?arrow_forwarda) Write down a relation giving the number of electrons occupying the energy states between the energy interval dɛ at ɛ. b) What is the probability that a state 0.1 eV above the Fermi level is occupied by an electron at room temperature ? What is the same probability if that state is1 eV above the Fermi level ? c) What is a magnetic moment ? The neutron is a neutral particle, but it has a magnetic moment. Explain why it is so.arrow_forwardSilicon atoms with a concentration of 7× 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T= 300 K: N. = 4.7 x 1017cm-3 and N, = 7 x 1018cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The acceptor concentration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY