MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 42, Problem 42.4DQ
The moment of inertia for an axis through the center of mass of a diatomic molecule calculated from the wavelength emitted in an l = 19 → l = 18 transition is different from the moment of inertia calculated from the wavelength of the photon emitted in an l = l → l = 0 transition. Explain this difference. Which transition corresponds to the larger moment of inertia?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The moment of inertia for an axis through the center of mass of a diatomic molecule calculated from the wavelength emitted in an l = 19 -> l = 18 transition is different from the moment of inertia calculated from the wavelength of the photon emitted in an l = 1 -> l = 0 transition. Explain this difference. Which transition corresponds to the larger moment of inertia?
The two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart.
The mass of the carbon atom is 1.993x10-26 kg.
The mass of the oxygen atom is 2.656x10-26 kg.
Spectroscopic measurements show that adjacent vibrational energy levels for the CO molecule are 0.269 eV.
What is the effective spring constant of the CO molecule? (Give your answer in N/m.)
Quantum Physics
Chapter 42 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
When a golf ball is dropped to the pavement, it bounces back up. (a) Is a force needed to make it bounce back u...
Physics for Scientists and Engineers with Modern Physics
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
13 (II) A 1.65-kg mass stretches a vertical spring 0.215 m. If the spring is stretched an additional 0.130 m an...
Physics: Principles with Applications
Problems 49 through 61 describe a situation. For each problem, draw a motion diagram, a force identification di...
College Physics: A Strategic Approach (4th Edition)
56. Ships A and B leave port together. For the next two hours, ship A travels at 20 mph in a direction 30º west...
College Physics: A Strategic Approach (3rd Edition)
30. A 3000-rn-high mountain is located on the equator. How much faster does a climber on top of the mountain mo...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The v = 0 to v = 1 vibrational transition of the HI molecule occurs at a frequency of 6.69 × 1013 Hz. The same transition for the NO molecule occurs at a frequency of 5.63 × 1013 Hz. Calculate (a) the effective force constant and (b) the amplitude of vibration for each molecule. (c) Explain why the force constant of the NO molecule is so much larger than that of the HI molecule.arrow_forwardA diatomic F2 molecule is in the l = 1 state, (a) What is the energy of the molecule? (b) How much energy is radiated in a transition from a l =2 to a l = l state?arrow_forwardIn a physics lab, you measure the vibrational- rotational spectrum of HCl. The estimated separation between absorption peaks is f5.51011Hz . The central frequency of the band is f0=9.01013Hz . (a) What is the moment of inertia (I)? (b) What is the energy of vibration for the molecule?arrow_forward
- As an alternative to Equation 42.1, another useful model for the potential energy of a diatomic molecule is the Morse potential U(r)=B[ea(rr0)1]2 where B, a, and r0 are parameters used to adjust the shape of the potential and its depth. (a) What is the equilibrium separation of the nuclei? (b) What is the depth of the potential well, defined as the difference in energy between the potentials minimum value and its asymptote as r approaches infinity? (c) If is the reduced mass of the system of two nuclei and assuming the potential is nearly parabolic about the well minimum, what is the vibrational frequency of the diatomic molecule in its ground state? (d) What amount of energy needs to be supplied to the ground-state molecule to separate the two nuclei to infinity?arrow_forwardCalculate the angular momentum of the 1H19F molecule for m = 3arrow_forwardSuppose the bond in a molecule is broken by photons of energy 5.0 eV. f = Submit Request Answer Part B Value X= Determine the wavelength of these photons. Express your answer with the appropriate units. Submit μA Value Units Request Answer Units www ?arrow_forward
- A diatomic molecule consists of two atoms having masses m1 and m2 separated by a distance r. Show that the moment of inertia about an axis through the center of mass of the molecule is given by Equation 42.3, I = μr2.arrow_forwardAn empirical interatomic pair potential for xenon atoms, in units of eV, and nm, and the lattice parameter of Xenon is equal to 0.630 nm. V(r) = 12.6 X 10-7 31.8 X 10-4 712 The calculated interatomic separation (nearest-neighbour) distance is: A. 0.2227 nm. B. 0.3536 nm C. 0.4455 nm D. 1.414 nmarrow_forwardHowever, the molecule we can encounter everyday continuously vibrates and interact with the surrounding causing its bond vector to vary slightly. According to a new spectroscopy analysis, the adjacent bond vectors was found to be A = 0.82i + 0.99j + 0.84k B = 1.09i + -1.01j + -0.97k What is the angle (in degrees) between the bonds based on this new data?arrow_forward
- Gggarrow_forwardAn H2 molecule is in its vibrational and rotational ground states. It absorbs aphoton of wavelength 2.2112 µm and makes a transition to the ν = 1, J = 1energy level. It then drops to the ν = 0, J = 2 energy level while emitting6/9SIX1011a photon of wavelength 2.4054 µm. Calculate (i) the moment of inertia of theH2 molecule about an axis through its centre of mass and perpendicular tothe H − H bond, (ii) the vibrational frequency of the H2 molecule, and (iii) theequilibrium separation distance for this molecule.arrow_forwardK:54)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY