MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 42, Problem 42.21DQ
To determine
Why the intrinsic conductivity of semiconductors always increases rapidly with increasing temperature while that of most metals decrease gradually with increasing temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The electrical conductivities of most metals decrease gradually with increasing temperature, but the intrinsic conductivity of semiconductors always increases rapidly with increasing temperature. What causes the difference?
In a certain semiconductor, the valence band can be approximated by the function E(k) = Eo ak² and the
conduction band can be described by the function E(k)= E₁ + 3k². Here E(k) is the electron energy and k is the
wavevector. Plot E(k) for the two bands. What is the bandgap of this semiconductor? Is this a direct
or indirect bandgap semiconductor?
Doping is necessary in order to enhance the conduction ability of a semiconductor. Support this statement by giving suitable arguments?
Chapter 42 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 42.1 - If electrons obeyed the exclusion principle but...Ch. 42.2 - Prob. 42.2TYUCh. 42.3 - Prob. 42.3TYUCh. 42.4 - One type of thermometer works by measuring the...Ch. 42.5 - Prob. 42.5TYUCh. 42.6 - Prob. 42.6TYUCh. 42.7 - Suppose a negative charge is placed on the gate of...Ch. 42 - Van der Waals bonds occur in many molecules, but...Ch. 42 - Prob. 42.2DQCh. 42 - The H2+ molecule consists of two hydrogen nuclei...
Ch. 42 - The moment of inertia for an axis through the...Ch. 42 - Prob. 42.5DQCh. 42 - Prob. 42.6DQCh. 42 - Prob. 42.7DQCh. 42 - The air you are breathing contains primarily...Ch. 42 - Prob. 42.9DQCh. 42 - Prob. 42.10DQCh. 42 - What factors determine whether a material is a...Ch. 42 - Prob. 42.12DQCh. 42 - Prob. 42.13DQCh. 42 - Prob. 42.14DQCh. 42 - Prob. 42.15DQCh. 42 - Prob. 42.16DQCh. 42 - Prob. 42.17DQCh. 42 - Prob. 42.18DQCh. 42 - Prob. 42.19DQCh. 42 - Prob. 42.20DQCh. 42 - Prob. 42.21DQCh. 42 - Prob. 42.22DQCh. 42 - Prob. 42.23DQCh. 42 - Prob. 42.24DQCh. 42 - If the energy of the H2 covalent bond is 4.48 eV,...Ch. 42 - An Ionic Bond, (a) Calculate the electric...Ch. 42 - Prob. 42.3ECh. 42 - Prob. 42.4ECh. 42 - Prob. 42.5ECh. 42 - Prob. 42.6ECh. 42 - Prob. 42.7ECh. 42 - Two atoms of cesium (Cs) can form a Cs2 molecule....Ch. 42 - Prob. 42.9ECh. 42 - Prob. 42.10ECh. 42 - A lithium atom has mass 1.17 1026 kg, and a...Ch. 42 - Prob. 42.12ECh. 42 - When a hypothetical diatomic molecule having atoms...Ch. 42 - The vibrational and rotational energies of the CO...Ch. 42 - Prob. 42.15ECh. 42 - Prob. 42.16ECh. 42 - Prob. 42.17ECh. 42 - Prob. 42.18ECh. 42 - Prob. 42.19ECh. 42 - Prob. 42.20ECh. 42 - Prob. 42.21ECh. 42 - Prob. 42.22ECh. 42 - Prob. 42.23ECh. 42 - Prob. 42.24ECh. 42 - Prob. 42.25ECh. 42 - Prob. 42.26ECh. 42 - Prob. 42.27ECh. 42 - Prob. 42.28ECh. 42 - Prob. 42.29ECh. 42 - Prob. 42.30ECh. 42 - Prob. 42.31ECh. 42 - Prob. 42.32ECh. 42 - Prob. 42.33PCh. 42 - Prob. 42.34PCh. 42 - Prob. 42.35PCh. 42 - The binding energy of a potassium chloride...Ch. 42 - (a) For the sodium chloride molecule (NaCl)...Ch. 42 - Prob. 42.38PCh. 42 - Prob. 42.39PCh. 42 - Prob. 42.40PCh. 42 - Prob. 42.41PCh. 42 - Prob. 42.42PCh. 42 - Prob. 42.43PCh. 42 - Prob. 42.44PCh. 42 - Prob. 42.45PCh. 42 - Prob. 42.46PCh. 42 - Prob. 42.47PCh. 42 - Prob. 42.48PCh. 42 - Prob. 42.49PCh. 42 - Prob. 42.50PCh. 42 - Prob. 42.51PCh. 42 - Prob. 42.52PCh. 42 - Prob. 42.53CPCh. 42 - Prob. 42.54CPCh. 42 - Prob. 42.55CPCh. 42 - Prob. 42.56PPCh. 42 - Prob. 42.57PPCh. 42 - Prob. 42.58PP
Knowledge Booster
Similar questions
- What is the main difference between an insulator and a semiconductor?arrow_forwardWhy does the horizontal Line in the graph in Figure 9.12 suddenly stop at the Fermi energy? Figure 9.12 (a) Density of state for a free electron gas; (b) probability that a state is occupied at T = 0 K; (c) density if occupied states at T = 0 k.arrow_forwardAt what temperature, in terms of Tc, is the critical field of a superconductor one-half its value at T = 0 K?arrow_forward
- Question 2: а. Find the conductivity of an intrinsic semiconductor which have the following values: µe = (0 + 0.25) m²/V.s; µp = (0+ 0.035) m²/V.s; n¡ = (0 + 1.55) × 10*m³.arrow_forwardA20. An intrinsic silicon semiconductor is uniformly doped with acceptors to a level of 2x1017 cm-³. At room temperature, the electron concentration in this semiconductor is found to be 5x10² cm-3. What is the intrinsic carrier concentration of this semiconductor at room temperature and describe qualitatively how would the electron concentration change if the temperature increased slightly?arrow_forwardProblem 1. The resistivity of an intrinsic semiconductor sample at 280 K was measured to be 15 Q·cm. At 320 K, it was 0.6 Q cm. Assuming that the mobilities of both electrons and holes decrease with temperature as µejh~ 1/T 32, find the bandgap of this material. Problem 2. You wish to create a 10-k2 resistor using an n-type (Na= 0) silicon bar of length L = 5 mm and cross-sectional area A = 0.05 mm. Assume complete ionization with no = Na and neglect the hole contribution to conductivity. Electron mobility in this material is known to depend on donor concentration according to an empirical formula (see section 6 of the Wikipedia article https://en.wikipedia.org/wiki/Electron_mobility) Hmax - Mmin µ(Na) = Hmin + 1+ (Na/N,)" with the parameters Umin 65 cm²/(V-s), µmax 1330 cm/(V s), N,= 8.5·1016 cm³, a = 0.72. (a) Determine the conductivity of your material needed to obtain the desired resistance. (b) Find the doping concentration needed to obtain the desired resistance. You will need to…arrow_forward
- How does a semiconductor vary from a conductor and an insulator, and what does it do? In your explanation, including a chart.arrow_forwardThe energy gaps Eg for the semiconductors silicon and germanium are, respectively, 1.12 and 0.67 eV. Which of the following statements, if any, are true? (a) Both substances have the same number density of charge carriers at room temperature. (b) At room temperature, germanium has a greater number density of charge carriers than silicon. (c) Both substances have a greater number density of conduction electrons than holes. (d) For each substance, the number density of electrons equals that of holes.arrow_forwardA light-emitting diode made of the semiconductor GaAsP gives off red light (λ= 650 nm). Determine the energy gap for this semiconductor. .arrow_forward
- 2arrow_forwardThe figure below is a part of the energy band diagram of a P-type semiconductor bar under equilibrium conditions (i.e., EF is constant). The valence band edge is sloped because doping is nonuniform along the bar. Assume that Ev rises with a slope of ∆ ⁄ L .arrow_forwardAs the doping density of a semiconductor increases, the :mobility generally Stays the same Increases Decreases First increases, then decreases First decreases, then increasesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax