Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 50P
To determine
To calculate:
the fraction of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Silver melts at 961°C. At the melting point, what fraction of the conduction electrons are in states with energies greater than the Fermi energy of 5.5 eV?
At what temperature do 1.30% of the conduction electrons in lithium (a metal) have energies greater than the Fermi energy EF, which is 4.70 eV?
The Fermi energy of aluminum is 11.6 eV; its density and molar mass are 2.70 g/cm3 and 27.0 g/mol, respectively. From these data, determine the number of conduction electrons per atom.
Chapter 41 Solutions
Fundamentals of Physics Extended
Ch. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3QCh. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - Prob. 6QCh. 41 - Prob. 7QCh. 41 - Prob. 8QCh. 41 - Prob. 9QCh. 41 - Prob. 10Q
Ch. 41 - Prob. 11QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53P
Knowledge Booster
Similar questions
- If the election number density (N/V) of a metal increases by a factor 8, what happens to the Fermi energy (EF)?arrow_forwardThe Fermi energy is the highest energy of an electron at 0K. At what temperature can we expect a 10% probability that the electrons in silver have an energy that is 1% above the Fermi energy of 5.5 eV?arrow_forwardStarting with the Fermi energy given in Table , estimate the number of conduction electrons per atom for aluminum, which has density 2.70 x 103 kg/m3 at T = 300 Karrow_forward
- At low temperatures, copper has a free-electron concentration n = 8.45 *1028 m-3. Using the free-electron model, find the Fermi energy for solid copper, and find the speed of an electron with a kinetic energy equal to the Fermi energy.arrow_forwardSuppose you need to design an n-type silicon semiconductor with a conductivity of 160 (N ·m)-1 at 300K. The atomic weight of silicon is 28.09 g/mol, and the density is 2.33g/cm³. The mobility of electrons/holes in silicon at different doping concentrations under different temperature is shown in the following figure. 0.1 102 102 10, 10 0.01 0.01 A kgou aoarrow_forwardThe Fermi energy is the highest energy of an electron at 0k.At what temperature can we expect a 10% probability that the electrons in silver have an energy that is 2% above the Fermi energy of 5.5eV?arrow_forward
- The concentration of acceptor silicon atom is 5×10^21 m^-3 at 300°k . How far from the edge of the valence band the fermi level if mh*=0.6marrow_forwardThe occupancy probability at a certain energy E1 in the valence band of a metal is 0.60 when the temperature is 300 K. Is E1 above or below the Fermi energy?arrow_forwardA certain material has a molar mass of 20.0 g/mol, a Fermi energy of 5.00 eV, and 2 valence electrons per atom.What is the density (g/cm3)?arrow_forward
- Silicon atoms with a concentration of 7× 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T= 300 K: N. = 4.7 x 1017cm-3 and N, = 7 x 1018cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The acceptor concentration?arrow_forwardCalculate the copper's mean free path. Let's say copper has a Fermi energy of 6.65 eV. 9.21 x1028 m-3 of electrons are present per unit volume. In copper, an electron has an effective mass of 1.51 times its rest mass. Copper has 5.9x107 S/m in conductivity.arrow_forwardThe probability of an electron occupying a state 3kT above the Fermi energy in a particular semiconducting sample is 4.74 x 10-2. What is the probability of a hole occupying a state 3kT below the Fermi energy in the same sample?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning