Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 19P
To determine
To calculate:
at T= 0oC, the probabilities that states with the following energies are occupied
(a) 4.4 eV
(b) 5.4 eV
(c) 5.5 eV
(d) 5.6 eV
(e) 6.4 eV
(f) the temperature a state with energy E = 5.6 eV is occupied with a probability of 0.16.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Fermi energy of silver is µF = 5.51 eV.
a) Calculate µ(7) of Ag at T = 400 and 4000 K.
b) What is the rms speed of electrons at 0 K? What is the Fermi velocity?
c) Plot the Fermi function at 0 and 4000 K in one graph and discuss the differences.
Since the Fermi energy level of zinc is EF = 9.47 eV, what is the number of electrons per unit energy per unit volume at this energy level? Since the resistivity of zinc is 5.90 x 10^-8 ohm.m, calculate the average time interval between collisions of electrons.
Silver contains 5.8 * 1028 free electrons per cubic meter. At absolute zero, what is the density of states (in states>J and states>eV) at the Fermi energy for a block of silver of volume 1.0 cm3?
Chapter 41 Solutions
Fundamentals of Physics Extended
Ch. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3QCh. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - Prob. 6QCh. 41 - Prob. 7QCh. 41 - Prob. 8QCh. 41 - Prob. 9QCh. 41 - Prob. 10Q
Ch. 41 - Prob. 11QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53P
Knowledge Booster
Similar questions
- The Fermi energy level for a particular material at T = 300 K is 5.50 eV. The electrons in this material follow the Fermi-Dirac distribution function. a) Find the probability of an energy level at 5.50 eV being occupied by an electron. b) Repeat part (a) if the temperature is increased to T = 600 K. (Assume that EF is a constant.). c) Calculate the energy level where probability of finding an electron at room temperature is 70%. d) Calculate the temperature at which there is a 7 percent probability that a state 0.4 eV below the Fermi level will be empty of an electron.arrow_forwardSilver contains 5.8 * 1028 free electrons per cubic meter. At absolute zero, what is the Fermi energy (in J and eV) of silver?arrow_forwardThe Fermi energy of sodium is 3.23 eV. (a) Find the average energy Eav of the electrons at absolute zero. (b) What is the speed of an electron that has energy Eav ? (c) At what Kelvin temperature T is kT equal to EF ? (This is called the Fermi temperature for the metal. It is approximately the temperature at which molecules in a classical ideal gas would have the same kinetic energy as the fastest-moving electron in the metal.)arrow_forward
- Physics Consider a solid piece of Lithium, Li, which is a metal and has electron density n = 4.70 × 1022 cm−3 . Assuming a free-electron quantum model, i.e., the Sommerfeld model, determine the, Fermi energy, density of states, and number of available states up to an energy of 4 eV for a cubic piece of Li of side 1 mm.arrow_forwardProve that mean energy of the electrons at absolute zero <E> = 3.Ef/5 where Ef is the Fermi energy. Show also that <v^2>/<v>^2 = 16/15arrow_forwardFor the nearly free electron model the first Brillouin zone boundary occurs when k = ± π/a , where k is the wavenumber and a the lattice constant. What is the radius of the Fermi surface of sodium as a ratio of the size of the first Brillouin zone in the kx direction in units of π/a? Sodium is monovalent.arrow_forward
- The Fermi-Dirac statistic describes the probability of occupation of an energy state E, as a function of temperature and of the parameter Ef, the Fermi energy.a) What is the physical interpretation for the result obtained when E = Ef?b) Under which conditions of temperature and position of the Fermi level, Ef, can the Fermi-Dirac statistic be written as a simple exponential? Justify your answer.arrow_forwardIn a Si semiconductor sample of 200 am length at 600 K the hole concentration as a' function of the sample length follows a quadratic relation of the form p (x) = 1 x1015x, at equilibrium the value of the electric field at 160 jum will be: O 1.935 V/cm O 3.250 V/cm O 5805 V/cm O 55.56 V/cm O 6.450 V/cmarrow_forwardThe Boltzmann constant is k = 8.617 * 10-5 eV/K. For a metallic solid at room temperature (293 K), what is the probability that an electron state is occupied if its energy is 0.100 eV above the Fermi level?arrow_forward
- The Fermi energy is the highest energy of an electron at 0k.At what temperature can we expect a 10% probability that the electrons in silver have an energy that is 2% above the Fermi energy of 5.5eV?arrow_forwardASAParrow_forwardSilicon atoms with a concentration of 7× 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T=300 K: N. = 4.7 x 1017cm-3 and N, = 7 × 1018cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The hole concentration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON