Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 8Q
To determine
To find:
(a) the direction of the electric field vector
(b) if the magnitude of field is greater for forward bias or for back bias condition.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a junction diode,
a) The charge carriers do not flow by diffusion from the p-type side to the n-type side and vice versa.
b) The depletion capacitance decreases with increase in the reverse bias.
c) The depletion capacitance increases with increase in the reverse bias.
d) The diffusion capacitance increases with increase in the forward bias.
X- Hall Effect demonstrates that it is the electrons that are free to move. Y-
Germanium and Selenium are materials that are intermediate between insulators
and conductors.
O X is true and Y is false
O X is false and Y is true
O X and Y are both true
O X and Y are both false
The polarizability of NH3 molecule is found approximately by the measurement of
dielectric constant as 2-42 x 10-39 coulomb²-m/newton and 1-74 x 10-39 coulomb?-m/newton on
309K and 448K respectively. Calculate for each temperature the polarizability due to deformation of
molecules.
Chapter 41 Solutions
Fundamentals of Physics Extended
Ch. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3QCh. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - Prob. 6QCh. 41 - Prob. 7QCh. 41 - Prob. 8QCh. 41 - Prob. 9QCh. 41 - Prob. 10Q
Ch. 41 - Prob. 11QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53P
Knowledge Booster
Similar questions
- In an unbiased p-n junction, holes diffuse from the p-region to n-region because(a) free electrons in the n-region attract them.(b) they move across the junction by the potential difference.(c) hole concentration in p-region is more as compared to n-region.(d) All the abovearrow_forward(a) A forward-bias voltage of 15.0 mV produces a positive current of 9.25 mA through a p-n junction at 300 K. What does the positive current become if the forward-bias voltage is reduced to 10.0 mV? (b) For reverse-bias voltages of -15.0 mV and -10.0 mV, what is the reverse-bias negative current?arrow_forwardConsider a conductor. If one of the terminals is subject to a higher potential while the other terminal to a lower potential, which of the following happens? The free electrons in the conductor will move and concentrate on the side with higher potential. The free electrons in the conductor will move and concentrate on the side with lower potential. The valence electrons will be dislodged from their parent atoms and move in random directions in the conductor. The answer cannot be found on the other choices.arrow_forward
- An abrupt uniformly doped silicon pn junction is reversed biased by Vg= 20 V. If Na(in n-side)=10" cm, N,(in p-side)=10" cm then the junction capacitance is 20 pF. The junction capacitance if Na(in n-side) increased to 3x10" cm' is equal to ....pF. a) 9 b)21 c)35 d) 52 e) 87arrow_forwardCheck Your Understanding Why is the potential energy associated with the exclusion principle positive in Example 9.1?arrow_forward-n junction has doping densities N₂ = 5x1018 cm 3 and N= 5x1015 cm 3 in the two regions. Assuming n₁ = 1.5 x Calculate the built-in potential at 300 K. alculate the total space charge width (depletion width) in equilibrium condition. Assume the dielectric constantarrow_forward
- Calculate the number density (number per unit volume) for (a) molecules of oxygen gas at 0.0°C and 1.0 atm pressure and (b) conduction electrons in copper. (c) What is the ratio of the latter to the former? What is the average distance between (d) the oxygen molecules and (e) the conduction electrons, assuming this distance is the edge length of a cube with a volume equal to the available volume per particle (molecule or electron)?arrow_forwardA p-n junction has a saturation current of 6.40 mA. (a) At a temperature of 300 K, what voltage is needed to produce a positive current of 40.0 mA? (b) For a voltage equal to the negative of the value calculated in part (a), what is the negative current?arrow_forwardA Si p- n junction with cross sectional area A= 0.01cm? is formed with N3=2x1017 cm3, Na= 1017cm3. Calculate: a) contact potential b) the depletion region width and c) the junction capacity at 0 and -2 Volts.arrow_forward
- 1.0 Biased PN Junctions Consider two PN diodes, A and B as depicted below. Suppose the junction area for each diode is 1.0 x10-8 cm² (1 square-micron) P-doped N-doped N = 1016 1/ cm3 Ng = 1017 1/cm³ X, *po Vo в P-doped Na = 1018 1/cm3 N-doped Ng = 1017 1/cm3 Х ро Xno V. a) At VD =0 Volts, which diode has the wider total depletion region width (value (in microns) and what is it? b) At Vp =0 Volts, in which diode the magnitude of the maximum electric field in the depletion region is the largest and what is its value (in V/cm)? c) Under a reverse bias Vp <0, which diode will breakdown first (i.e. at a smaller magnitude of the negative bias).arrow_forwardA charge distribution with spherical symmetry has density = [' Pv Po₂ 0, 0≤r≤R r> R Calculate energy with p.V du equation. PV dvarrow_forwardGiven that the bottom of the conduction band can be approximated using the equation E = Ak^2 + Bk. Determine the constant A if the effective mass of electrons at this region is 0.54m0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax