Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 10Q
To determine
To find:
(a) the location of
(b) the valence electrons.
(c) an electron associated with the 2p subshell in an isolated silicon atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a silicon lattice, where should you look if you want to find (a) a conduction electron, (b) a valence electron, and (c) an electron associated with the 2p subshell of the isolated silicon atom?
Silicon is doped with 3×1018 arsenic atoms/cm3 and 8 × 1018 boron atoms/cm3. (a) Is this n- or p-type silicon? (b) What are the hole and electron concentrations at room temperature?
Phosphorus (P) is present in a germanium (Ge) sample. Assume that one of its five valence electrons revolves in a Bohr orbit around each P+ ion in the Ge lattice.
(a) If the effective mass of the electron is 0.17 me and the dielectric constant of Ge is 16, find the radius of the first Bohr orbit of the electron.
(b) Ge has a band gap (Eg) of 0.65 eV. How does the ionization energy of the above electron comparing to Eg and kBT at room temperature?
Chapter 41 Solutions
Fundamentals of Physics Extended
Ch. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3QCh. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - Prob. 6QCh. 41 - Prob. 7QCh. 41 - Prob. 8QCh. 41 - Prob. 9QCh. 41 - Prob. 10Q
Ch. 41 - Prob. 11QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53P
Knowledge Booster
Similar questions
- An isolated zinc atom has a ground-state electron configuration of filled 1s, 2s, 2p, 3s, 3p, and 4s subshells. How can zinc be a conductor if its valence subshell is full?arrow_forwardCalculate the radius of a nickel atom in cm, given that Ni has an FCC crystal structure, a density of 7.982 g/cm³, and an atomic weight of 58.69 g/mol.arrow_forwardWhen a photon enters the depletion zone of a p-n junction, the photon can scatter from the valence electrons there, transferring part of its energy to each electron, which then jumps to the conduction band. Thus, the photon creates electron–hole pairs. For this reason, the junctions are often used as light detectors, especially in the x-ray and gamma-ray regions of the electromagnetic spectrum. Suppose a single 662 keV gamma-ray photon transfers its energy to electrons in multiple scattering events inside a semiconductor with an energy gap of 1.1 eV, until all the energy is transferred. Assuming that each electron jumps the gap from the top of the valence band to the bottom of the conduction band, find the number of electron – hole pairs created by the process.arrow_forward
- Assume that the mobility of electrons in silicon at T = 300 K is µ= 1300 cm²/V-s. Also assume that the mobility is mainly limited by lattice scattering. Determine the electron mobility(cm:/V-s) at T= 400 K. !! 484 864 854 844arrow_forwardFor silicon the conduction band minimum is located at 0.49 Å-1 in the [100] direction (X is the Brillouin zone at H00), while the valence band maximum is located at the Γ point (k = 0).a) What is the wavelength and energy of photons needed to supply the required momentum to excite an electron from the Γ point to the conduction band minimum? b) What is the wavelength of photons needed to supply the required energy to excite an electron from the Γ point to the conduction band minimum?c) What limits optical absorption in silicon at photon energies near the band gap?arrow_forwardThe elements A and B crystallize in bcc and fcc structures, respectively. Suppose that (i) the crystals of A and B have the same density, and (ii) the nearest-neighbor distances in these crystals are equal. Calculate the ratio MA/MB, where MA and MB denote the masses of the A and B atoms, respectively.arrow_forward
- Nickel (fcc) has the lattice parameter of 3.52 A° . calculate the atomic planar density ( number of atoms per unit area) on (100),(110), and (111) planes. Is it possible to pack the atoms more closely than in (111) plane?arrow_forwardBody-centered cubic structure. (a) Show that for BCC the lattice length a in terms of the atomic radius is 4R/√3. (b) Calculate the volume of a BCC unit cell in terms of the atomic radius R. (c) Show that the atomic packing factor for the BCC crystal structure is 0.68.arrow_forwardIn an n-type silicon, which of the following statement is true:(a) Electrons are majority carriers and trivalent atoms are the dopants.(b) Electrons are minority carriers and pentavalent atoms are the dopants.(c) Holes are minority carriers and pentavalent atoms are the dopants.(d) Holes are majority carriers and trivalent atoms are the dopants.arrow_forward
- The maximum wavelength of light that a certain silicon photocell can detect is 1.11 mm. (a) What is the energy gap (in electron volts) between the valence and conduction bands for this photocell? (b) Explain why pure silicon is opaque.arrow_forwardGggarrow_forwardWhen a phosphorus atom is substituted for a silicon atom in a crystal, four of the phosphorus valence electrons form bonds with neighboring atoms and the remaining electron is much more loosely bound. You can model the electron as free to move through the crystal lattice. The phosphorus nucleus has one more positive charge than does the silicon nucleus, however, so the extra electron provided by the phosphorus atom is attracted to this single nuclear charge +e. The energy levels of the extra electron are similar to those of the electron in the Bohr hydrogen atom with two important exceptions. First, the Coulomb attraction between the electron and the positive charge on the phosphorus nucleus is reduced by a factor of 1/k from what it would be in free space (see Eq. 25.23), where k is the dielectric constant of the crystal. As a result, the orbit radii are greatly increased over those of the hydrogen atom. Second, the influence of the periodic electric potential of the lattice causes…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning