Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 24P
To determine
To calculate:
the density of a certain given metal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The density of sodium metal at room temperature is 0.95 g/cm³. Assuming that there
is one conduction electron per sodium atom, calculate the Fermi energy and Fermi tempera-
ture of sodium.
Silver contains 5.8 * 1028 free electrons per cubic meter. At absolute zero, what is the Fermi energy (in J and eV) of silver?
Silicon has a conductivity of 5×10-4 (Q.m)-1 when pure. How many
arsenic atoms/m3 are required so that the conductivity of 200 (Q .m)-1.
The mobility of electrons is O.13 (m2/V. Sec), mobility of holes is
0.05(m2/V.Sec)
O 2.4038*10^16 /m-3
O 9.6153*10^21/m-3
O 4*10^5 /m-3
O 9.4089*10^5 /m-3
O other:
Chapter 41 Solutions
Fundamentals of Physics Extended
Ch. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3QCh. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - Prob. 6QCh. 41 - Prob. 7QCh. 41 - Prob. 8QCh. 41 - Prob. 9QCh. 41 - Prob. 10Q
Ch. 41 - Prob. 11QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53P
Knowledge Booster
Similar questions
- The Fermi energy of aluminum is 11.6 eV; its density and molar mass are 2.70 g/cm3 and 27.0 g/mol, respectively. From these data, determine the number of conduction electrons per atom.arrow_forwardIn solid KCI the smallest distance between the centers of a. potassium ion and a chloride ion is 314 pm. Calculate the length of the edge of the unit cell and the density of KCI, assuming it has the same structure as sodium chloride.arrow_forwardThe average energy of an electron in a specific metal at 0 K is 2.9 eV. Calculate the value of the Fermi energy in a specific metal. (A) 5.51 eV (В) 2.44 eV (С) 4.83 eV (D) 2.83 eVarrow_forward
- Silver melts at 961°C. At the melting point, what fraction of the conduction electrons are in states with energies greater than the Fermi energy of 5.5 eV?arrow_forwardA certain bivalent metal has a density of 6.906 g/cm3 and a molar mass of 97.8 g/mol. Calculate (a) the number density of conduction electrons, (b) the Fermi energy, (c) the Fermi speed, and (d) the de Broglie wavelength corresponding to this electron speed.arrow_forwardWhat is the Fermi energy of gold (a monovalent metal with molar mass 197 g/mol and density 19.3 g/cm3)?arrow_forward
- Silicon atoms with a concentration of 7× 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T=300 K: N. = 4.7 x 1017cm-3 and N, = 7 × 1018cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The hole concentration?arrow_forwardQ2: For tungsten the total number of free electrons (n) and Fermi level. Assume that there are two free electrons per atom. If density=18.8×10°kg/m³, and atomic weight=184. (Ans. 1.23x1029/m³, 8.95eV) gy level is 0 0aarrow_forwardCalculate the value of the Fermi energy for a specific metal when it contains 2.54x1028 free electrons per cubic meter (m, = 9.11x10-31 kg and h= 6.63x10-3ª J.s). (A) 1.15 eV (В) 3.1 еV (С) 13.6 eV (D) 0.50 eVarrow_forward
- Copper metal can be well-described by assuming that the electrons inside are free, with a den- sity ne = 8.47 × 1028 m-³. Calculate the Fermi energy EF.arrow_forwardAnd its density is 9 if you know that the atomic weight of a metal is 132.9 1.873 gm / cm ^ 3 and that each atom of it contributes one electron to the electronic gas. The Fermi energy of this metal is (in eV units):- *arrow_forwardQ3/ An experiment was conducted to find the relationship between the specific heat of potassium metal and the temperature, and it was found that this relationship takes the following formula at low temperatures 2.08 +2.57 T2 What is the value of each of: (1) the fermi temperature of potassium? (b) Debye temperature of potassium? Note that specific heat is measured in units of mj / mol / K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax