Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 5Q
To determine
To find:
the occupancy probability of a certain energy level E1 in the valence band of a metal, and say whether it is above or below the Fermi energy.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The occupancy probability at a certain energy E1 in the valence band of a metal is 0.60 when the temperature is 300 K. Is E1 above or below the Fermi energy?
The Fermi energy is the highest energy of an electron at 0K. At what temperature can we expect a 10% probability that the electrons in silver have an energy that is 1% above the Fermi energy of 5.5 eV?
The Fermi energy is the highest energy of an electron at 0k.At what temperature can we expect a 10% probability that the electrons in silver have an energy that is 2% above the Fermi energy of 5.5eV?
Chapter 41 Solutions
Fundamentals of Physics Extended
Ch. 41 - Prob. 1QCh. 41 - Prob. 2QCh. 41 - Prob. 3QCh. 41 - Prob. 4QCh. 41 - Prob. 5QCh. 41 - Prob. 6QCh. 41 - Prob. 7QCh. 41 - Prob. 8QCh. 41 - Prob. 9QCh. 41 - Prob. 10Q
Ch. 41 - Prob. 11QCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 14PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 35PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Prob. 40PCh. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43PCh. 41 - Prob. 44PCh. 41 - Prob. 45PCh. 41 - Prob. 46PCh. 41 - Prob. 47PCh. 41 - Prob. 48PCh. 41 - Prob. 49PCh. 41 - Prob. 50PCh. 41 - Prob. 51PCh. 41 - Prob. 52PCh. 41 - Prob. 53P
Knowledge Booster
Similar questions
- If the election number density (N/V) of a metal increases by a factor 8, what happens to the Fermi energy (EF)?arrow_forwardWhy does the horizontal Line in the graph in Figure 9.12 suddenly stop at the Fermi energy? Figure 9.12 (a) Density of state for a free electron gas; (b) probability that a state is occupied at T = 0 K; (c) density if occupied states at T = 0 k.arrow_forwardThe concentration of acceptor silicon atom is 5×10^21 m^-3 at 300°k . How far from the edge of the valence band the fermi level if mh*=0.6marrow_forward
- Starting with the Fermi energy given in Table , estimate the number of conduction electrons per atom for aluminum, which has density 2.70 x 103 kg/m3 at T = 300 Karrow_forwardThe fermi energy is the highest energy of an electron at 0K. At what temperature can we expect a 50% probability that the electron is silver have an energy that is 1% above the fermi energy of 5.5eV?arrow_forwardSuppose you need to design an n-type silicon semiconductor with a conductivity of 160 (N ·m)-1 at 300K. The atomic weight of silicon is 28.09 g/mol, and the density is 2.33g/cm³. The mobility of electrons/holes in silicon at different doping concentrations under different temperature is shown in the following figure. 0.1 102 102 10, 10 0.01 0.01 A kgou aoarrow_forward
- The Fermi energy of the conduction electrons in lithium metal is 4,7 eV measured from the bottom of the conduction band, what fraction of these electrons are thermally excited at 300 K? Make a rough estimate of the heat capacity of 1 mole of the electron at 10 K.arrow_forwardSilicon is doped with phosphorus atoms (column V of Mendeleev table) with a concentration of 1018 cm-3 a- What is, at 27 °C, the electron density in doped Si. Use this result to derive the hole density. Which type of semiconductor is obtained? b- Calculate, at 27 °C, the position of the Fermi level EF and plot the band diagram.arrow_forwardIf the energy gap for an insulating material is 4.5 eV, what is the probability that an electron will be promoted to the conduction band when the temperature is 100 °C? You may assume that the Fermi energy is in the middle of the energy gap.arrow_forward
- Time left In a phosphorous-doped (n-type) silicon, the Fermi level is shifted upward 0.1 eV. What is the probability of an electron's being thermally promoted to the conduction band in silicon (Eg = 1.107 eV at 25 deg C? Your answer must be to 2 significant figures or will be marked wrong. Nearrow_forwardA pure semiconductor has a band gap of 1.25 eV. The effective masses of electron and hole are 0.1me and 0.5me respectively, where me is the free electron mass. The carrier scattering time is 0.2 ps (Pico seconds). Find the following at a temperature of 300 K(a) Concentration of electrons and holes(b) Fermi energy(c) Electron and hole mobilities(d) Electrical conductivityarrow_forwardDetermine the thermal-equilibrium concentrations of electrons and holes in silicon at T =300 K if the Fermi energy level is 0.2 eV above the valence-band energy. Assume that the bandgap of semiconductor is 1 eV. Nc=2x1019 cm-3 and Nv=1x1019 cm-3. Take kT=25.875 meVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax