University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.6E
To determine
The energy difference between the two lowest energy levels for a proton in a cubical box with side length
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
From far away a proton is fired directly toward the center of the nucleus of a
mercury atom. Mercury is element number 80, and the diameter of the nucleus is
14.0 fm. Assume the mercury nucleus is fully-ionized, with no electrons bound to it.
If the proton is fired at a speed of 3.8×107 m/s, what is its
closest approach to the surface of the nucleus? Assume the
nucleus remains at rest.
Express your answer with the appropriate units.
► View Available Hint(s)
0
d = 2.7
Submit
A
fm
Previous Answers
?
X Incorrect; Try Again; 13 attempts remaining
A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?
Two electrons in the nucleus of a 238U atom are separated by a distance of 8 fm. What is the potential energy of the arrangement?
A) 179.77 keVB) 2.25×10 43 eVC) 4.61×10 −33 keVD) 3.596 eV
Chapter 41 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The oxygen nucleus 16O has a radius of 3.0 fm.a. With what speed must a proton be fired toward an oxygen nucleus to have a turning point 1.0 fm from the surface?Assume that the nucleus is heavy enough to remain stationary during the collision.b. What is the proton’s kinetic energy in MeV?arrow_forwardIn Rutherford's famous scattering experiments that led to the planetary model of the atom, alpha particles (having charges of +2e and masses of 6.64 x 10-27 kg) were fired toward a gold nucleus with charge +79e. An alpha particle,arrow_forwardThe energy of the n = 2 Bohr orbit is -30.6 eV for an unidentified ionized atom in which only one electron moves about the nucleus. What is the radius of the n = 3 orbit for this species? Number i Units >arrow_forward
- A 12.5 eV electron beam is used to excite a gaseous hydrogen atom at room temperature. Determine the wavelengths and the corresponding series of the lines emitted.arrow_forwardThe K series of the discrete x-ray spectrum of tungsten contains wavelengths of 0.018 5 nm, 0.020 9 nm, and 0.021 5 nm. The K-shell ionization energy is 69.5 keV. (a) Determine the ionization energies of the L, M, and N shells. L shell _keV M shell keV N shell _keVarrow_forwardProblem 7: The electric potential near a hydrogen atom can be modeled as the equation to the right where ao is the Bohr radius and q is the charge on the central proton. V (r) exp(- 2r/a,)(1 +a/r) Randomized Variables m = 2 n = 3 Part (a) Find an expression for the 0-component of the electric field, Eg. Numeric : A numeric value is expected and not an expression. Eg = Part (b) Find an expression for the o-component (azimuthal) of the electric field, Eo Expression : Select from the variables below to write your expression. Note that all variables may not be required. a, B, 0, a, b, c, d, g, h, j, k, m, P, S, t Part (c) What is the change in the magnitude of the electric field (in N/C) if a test point moves from the position (x = m²ao, y = 0, z = 0) to position (x = n-ao, y = 0, z = 0). Numeric : A numeric value is expected and not an expression. ΔΕ Ξarrow_forward
- = = Imagine that we have a box that emits electrons in a definite but unknown spin state y). If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz +ħ and 80% to have S₂ -ħ. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx Determine the state vector for electrons emerging from the box. You may assume that the vector components are real. -1/ħ. = -arrow_forwardAssume a hypothetical atom with a nucleus that consists of two positrons (instead of two protons). Positron has a charge of +1 and the mass of an electron. Write down the hydrogen like energy of a neutral 2-positrons atom.arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forward
- What is the radius in nm of the electron orbit of a hydrogen atom for n = 1?in nanometersarrow_forwardNiloarrow_forwardThe long range interaction between a neutral atom and a charged particle has the form V(r)= 0.5α/(r^4). r is the distance between the atom and the particle. The polarizability for hydrgen is α = 4.5 atomic units. What's α expressed in SI units?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning