University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.41P
(a)
To determine
The fraction of the cubical volume relative to the total volume of the box.
(b)
To determine
The probability that the particle will be found in the cubical volume
(c)
To determine
The probability that the particle will be found in the cubical volume
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The nucleus of a gold atom has a radius of 7.0 fm. Estimate the kinetic energy of a proton or neutron confined to a gold nucleus.
Hint :Use HEISENBERG PRINCIPLE to find Linear Momentum of Neutron or Proton with uncertainity in position equals to radius 7.0 fm.
*24 Figure 39-30 shows a two-dimen-
sional, infinite-potential well lying in an
xy plane that contains an electron. We
probe for the electron along a line that
bisects L, and find three points at which
the detection probability is maximum. Figure 39-30 Problem 24.
Those points are separated by 2.00 nm.
Then we probe along a line that bisects L, and find five points at
which the detection probability is maximum. Those points are sep-
arated by 3.00 nm. What is the energy of the electron?
A thin solid barrier in the xy-plane has a 12.6µm diameter circular hole. An electron traveling in
the z-direction with vx
0.00m/s passes through the hole. Afterward, within what range is vx
likely to be?
Chapter 41 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- A particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.arrow_forwardThe wave function of a particle in a box is given by ____________ a) A sin(kx) b) A cos(kx) c) Asin(kx) + Bcos(kx) d) A sin(kx) – B cos(kx)arrow_forwardWhat is the probability of the particle that in the box with a length of 2 nm is between x = 0.2 and x = 1.0 nm? Ѱ=√(2/L)*sin(nπx/L)arrow_forward
- Q#07. Consider the following three wave functions: 41y) = A,e¬y² P2v) = Aze-&²/2) 3(v) = A3 (e¯y² + ye-*/2) where A1, 42, and A3 are normalization constants. (a) Find the constants A1, A2, and A3 so that 2, P1, and wz are normalized. (b) Find the probability that each one of the states will be in the interval -1< y< 1.arrow_forwardFor a particle in a three-dimensional box, if the particle is in the (nx, ny, nz)=(4,3,3) state, what is the probability of finding the particle within 0<x<7LX/8 0,y,3Ly/4 LZ/4<z<Lzarrow_forwardA particle is trapped in an infinite one-dimensional well of width L. If the particle is in its ground state, evaluate the probability to find the particle (a) between x = x = L/3; (b) between x = L/3 and x = x = 2L/3 and x = L. O and 2L/3; (c) between %3Darrow_forward
- JC-33) Particle in a Well A particle is trapped in an infinite one-dimensional well of width L. If the particle is in its ground state, evaluate the probability to find the particle (a) between x = 0 and x = L/3; (b) between x = L/3 and x = 2L/3; (c) between x = 2L/3 and x = L. %3Darrow_forwardIf the particle in the box in the second excited state(i.e. n=3), what is the probability P that it is between x=L/2 and x=L/3 ?arrow_forwardAt room temperature, the fourth excited state of a microscopic oscillator is 0. 26 eV above the ground state energy. What is the Boltzmann factor for this excited state? Boltzmann factor =arrow_forward
- A particle of massm in a harmonic oscillator potential with angular frequency w is in the state (1 + {t)쭈 What is (p?) for this particle? mhw 2 O 6mħw O 3mhwarrow_forwardFor a particle in a one-dimensional box, calculate the probability of the particle to exists between the length of 0.30L and 0.70L if n = 5.arrow_forwarda. Consider a particle in a box with length L. Normalize the wave function: (x) = x(L – x) b. Consider a particle in a box of length L= 1 for the n= 2 state. Determine which of the two wave functions is normalized: v(x) = sin (27x) %3|arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning