University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.47P
(a)
To determine
To show: Total number of atomic states in a shell of principal quantum number
(b)
To determine
The shell which has
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a)How many sets of quantum numbers are possible for a hydrogen atom for n = 4,? ).
(b) Write out a set of possible values for the quantum numbers n, ℓ, mℓ, and ms for each electron if all states are occupied including n=4.
(c)Write table of occupancy of quantum numbers: n, ℓ, mℓ, and ms for Arsenic As, including spin orientations.
(4) Electronic energy level of a hydrogen atom is given by
R
; п %3D 1,2, 3,...
n2
E = -
and R = 13.6 eV. Each energy level has degeneracy 2n2 (degeneracy is the number of equivalent
configurations associated with the energy level).
(a) Derive the partition function for a hydrogen atom at a constant temperature.
(b) Consider that the energy level of a hydrogen atom is approximated by a two level system,
n = 1,2. Estimate the mean energy at 300 K.
(4) Electronic energy level of a hydrogen atom is given by
R
E
; n =
n2
1, 2, 3,...
and R = 13.6 eV. Each energy level has degeneracy 2n² (degeneracy is the number of equivalent
configurations associated with the energy level).
(a) Calculate the partition function Z for a hydrogen atom at a constant temperature.
(b) Let us consider that the energy level of a hydrogen atom is approximated by a two level
system, n = 1,2. Estimate the mean energy at 300 K.
Chapter 41 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- B) A spin state in an arbitrary direction is given by directions. Cas 2 -io sin 2 Find the form of the states in z, x and yarrow_forwardAn electron is in a spin state given by 2 to = √² (¹/²) |x) 3 Find the probability that a measurement of Sy will yield the value +ħ/2.arrow_forwardSuppose that an atom has (a) 4, (b) 5 electrons in different orbitals. What are the possible values of the total spin quantum number S? What is the multiplicity in each case.arrow_forward
- Measurements made on the line spectrum emitted by a certain atom of intermediate Z show that the ratio of the separation energies between three adjacent levels of increasing energy in a particular multiplet is approximately 3 to 5 (that is the energy difference between the second and the third member of the multiplet is 5/3 of the energy difference between the first and the second member of the multiplet.) a) What are the j' quantum number that can be assigned to these states? b) What is the l' quantum number that can be assigned to these states? c) What is the s' quantum number that can be assigned to these states?arrow_forwardWhat is the degeneracy of the n = 3 level? That is, how many different states are contained in the energy level E3 =- E0/9?arrow_forwardConsider the elements selenium (Z = 34), bromine (Z = 35), and krypton (Z = 36). In their part of the periodic table, the subshells of the electronic states are filled in the sequence 1s 2s 2p 3s 3p 3d 4s 4p . . . . What are (a) the highest occupied subshell for selenium and (b) the number of electrons in it, (c) the highest occupied subshell for bromine and (d) the number of electrons in it, and (e) the highest occupied subshell for krypton and (f) the number of electrons in it?arrow_forward
- View a system of two particles that do not interact with each other, where each particle can occupy three possible states, each with energy E, 2ɛ, 3ɛ (i) Marwell Boltzmann Na. Configuration 1 2 3 4 S 6 7 8 9 1 2 3 1 2 3 + 5 6 () Fermi-Dirac No. Configuration & () Boson Base- Ginstein: Nader Canliguration AG A A B B E AA A A Distinguishable 28 E A A AB B A A 8 AA A A 3E In distinguishable 28 28 AB A B A B A JE AA A A Energy system A A 28 پی ال سی * 48 Indistinguishable We know fermion follow exclusion principle.. 38 Energy que tom 32 4E 28 42 SE SE Energy system 22 48 68 3E 4E SE 38 48 SE Calculate the system partition function as a temperature function for the three statistics abovearrow_forwardHow many electrons can occupy the 3d subshell? (b) Howmany electrons can occupy the n = 2 shell?arrow_forwardIn a one-dimensional system, the density of states is given by N(E)= 2m, where L is the length of the sample L√2m in the and m is the mass of the electron, as seen in class. There are N quantum particles with spin |S| = sample (the quantum particles can be understood as 'special electrons with spin [S] ='), so that each state can be occupied by 2|S| + 1 particles. Determine the Fermi energy at 0 K.arrow_forward
- 2. Start with the four possible two-electron spin functions: 1 Va = a (1) a (2) √2 Vc= [a(1)B(2) + B(1)a (2)] = Va b = B(1)B(2) la(1)B(2) - B(1)a(2)] Evaluate each of these with the total z-component spin operator, Sz total = Sz1 + Śzz to find the value of the total spin, which is the eigenvalue in Sz total(1,2)= Sz total(1,2). Keep in mind that S₂1 a(1) = 1/2 and S₂1 B(1) = -1/2; and that (A + B) = A + Bw. =arrow_forward(a) The Lyman series in hydrogen is the transition from energy levels n = 2, 3, 4, ... to the ground state n = 1. The energy levels are given by 13.60 eV En n- (i) What is the second longest wavelength in nm of the Lyman series? (ii) What is the series limit of the Lyman series? [1 eV = 1.602 x 1019 J, h = 6.626 × 10-34 J.s, c = 3 × 10° m.s] %3D Two emission lines have wavelengts A and + A2, respectively, where AA <<2. Show that the angular separation A0 in a grating spectrometer is given aproximately by (b) A0 = V(d/m)-2 where d is the grating constant and m is the order at which the lines are observed.arrow_forwardFigure below shows the first four peaks of the x-ray diffraction pattern for copper, which has an FCC crystal structure; monochromatic x-radiation having a wavelength of 0.1542 nm was used. Intensity (relative) 40.0 Peak 1: Peak 2: Peak 3: 50.0 Peak 4: 70.0 Diffraction angle 20 a) Index (i.e., give h, and I indices) for each of these peaks. 60.0 Diffraction pattern for polycrystalline copper. 80.0 90.0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning