University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.66P
(a)
To determine
The side length
(b)
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A visible (violet) emission spectral line for chromium (Cr) occurs at wavelength λ = 425.435 nm.
A) What is the frequency (ν) of this light?(Give correct units and answer to six significant figures.)
B) What is the magnitude of the energy change associated with the emission of one mole of photons of light with this wavelength?
When an electron in a one-dimensional box makes a transition from the n = 1 energy level to the n = 2 level, it absorbs a photon of wavelength 426 nm. What is the wavelength of that photon when the electron undergoes a transition (a) from the n = 2 to the n = 3 energy level and (b) from the n = 1 to the n = 3 energy level? (c) What is the width L of the box?
Consider photons at temperature T = 300K in a cubic box of volume 1 m' with periodic boundary conditions.
a) Find the total number of photons in the lowest orbital state. What is the total energy of these photons?
Hint: The 1-particle energy of photons is ɛ(k,s)=ħck =
hc
, independent of polarization s.
Consider the Bose-Einstein distribution function (with u= 0) for the lowest-energy orbital states
2л
k, = (1,0,0), k, =(0,1,0), k, =(0,0,1). Find the total number of photons that occupy
L
L
L
these states, taking into account that each of the orbital states has 2 polarizations s.
b) Find the number of photons in a single orbital state with wavelength 2 = 5000 Å.
What is the total energy of these photons?
Chapter 41 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a hydrogen atom undergoes a transition from n=3 to n=2 level, a photon with λ=656.5 nm is emitted. (a) If we imagine the atom as an electron in a one-dimensional box, what is the width of the box so that the transition from n=3 to n=2 corresponds to the emission of a photon of this wavelength? (b) For a box with the width calculated in (a), what is the ground energy state? (c) Do you think a one-dimensional box is a good model for a hydrogen atom? Because?arrow_forwardAn atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?arrow_forwardAn electron with an initial total energy of E=3.757 eV (in a region with zero potential) is incident on a potential step (extending from x=0 to infinity) to V=1.952 eV. What is the electron's de Broglie wavelength in nm once it crosses the potential step?arrow_forward
- A 100 W sodium lamp (l = 589 nm) radiates energy uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon/cm2 s? (c) What is the photon flux (photons per unit area per unit time) on a small screen 2.00 m from the lamp?arrow_forwardAn electron is moving past the square barrier shown in Fig. , but the energy of the electron is greater than the barrier height. If E = 2U0 , what is the ratio of the de Broglie wavelength of the electron in the region x 7 L to the wavelength for 0 6 x 6 L?arrow_forwardA photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…arrow_forward
- The interatomic spacing in a crystal of table salt is 0.282 nm. This crystal is being studied in a neutron diffraction experiment. How fast must a neutron (mass = 1.67x10-27 kg) be moving to have a de Broglie wavelength of 0.282 nm?arrow_forwardA sheet of metal is illuminated by photons with a wavelength of 325 nm and the emitted electrons are found to have a maximum kinetic energy of 1.25 eV. If the same metal is illuminated by 225 nm light, what will be the maximum speed of emitted electrons? Give your answer in km/s to 3 significant digits.arrow_forwardLight with wavelength ? = 635 nm is incident on a metallic surface. Electrons are ejected from the surface. The maximum speed of these electrons is v = 4.40 ✕ 105 m/s. a) What is the work function of the metal (in eV)? b) What is the cutoff frequency for this metal (in Hz)?arrow_forward
- Fresh out of university you've been hired to do some photoelectron spectroscopy. You have a lamp that outputs an unknown wavelength of light. When the light is incident on a metal with a work function of 6.31 eV, you observe a stopping voltage equal to 4.21 V. What is the wavelength of the light? (unit in nm).arrow_forwardChemists use infrared absorption spectra to identify chemicals in a sample. In one sample, a chemist finds that light of wavelength 5.8 um is absorbed when a molecule makes a transition from its ground harmonic oscillator level to its first excited level. (a) Find the energy of this transition. (b) If the molecule can be treated as a harmonic oscillator with mass 5.6 * 10-26 kg, find the force constant.arrow_forwardThe work function for platinum is 6.35 eV. Ultraviolet light of wavelength 150 nm is incident on the clean surface of a platinum sample. We wish to predict the stopping voltage we will need for electrons ejected from the surface. (a) What is the photon energy of the ultraviolet light? (b) How do you know that these photons will eject electrons from platinum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax