University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.53P
(a)
To determine
To show: For an excited state of hydrogen, the smallest angle the orbital
(b)
To determine
The largest possible angle,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Calculate: (i) the energy spacing AE between the ground state and the first excited
state of the hydrogen atom; (ii) and the ratio AE/E between the spacing and the ground state
energy.
(b) Consider now a macroscopic system: a simple pendulum which consists of a 5 g mass
attached to a 2 m long, massless and inextensible string. Calculate (i) the total energy E1 of
the pendulum when the string makes an angle of 60° with the vertical; (ii) the frequeney of the
pendulum's small oscillations and the energy AE of one quantum; and (iii) the ratio AE/E1.
(c) Examine the sizes of the ratio AE/E1 calculated in parts (a) and (b) and comment on
the importance of the quantum effects for the hydrogen atom and the pendulum.
(a) What is the magnitude of the orbital angular momentum in a state with e = 2? (b) What is the magnitude of its largest projection
on an imposed axis?
(a) Number
2.50998008
Units
J.s
(b) Number
2.11
Units
J.s
an angular momentum vector has a maximum z component of +3ℏ, how many different z components can it have?
Chapter 41 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- A hydrogen atom is in the stationary state (n, I, m) = (5, 3, 1) What is the angle between the angular momentum vector L and Lz? Give you answer to 3 significant figures and in units of degrees, but do not include the units in your answer.arrow_forwardYou are working on determining the angle that separates two hybridized orbitals. In the process of determining the coefficients in front of the various atomic orbitals, you align the first one along the z-axis and the second in the x/z-plane (so o = 0). The second hybridized orbital was determined to be: W2 = R1s + R2p, sin 0 + R2p, cos 0 Determine the angle, 0, in degrees to one decimal place (XX.X) that separates these two orbitals. Assume that the angle will be between 0 and 90 degrees.arrow_forwardAn electron is in the hydrogen atom with n = 5. (a) Find the possible values of L and Lz for this electron, in units of h. (b) For each value of L, find all the possible angles between L → and the z-axis. (c) What are the maximum and minimum values of the magnitude of the angle between L →and the z-axis?arrow_forward
- An electron occupying the n = 6 shell of an atom carries z-component orbital angular momentum = (–2) × h/2π. Given that the electron’s total orbital angular momentum is x × h/2π, what is the maximum possible value of numberx (remember to use the scientific notation)?arrow_forward(d) The following orbital belongs to the 3d subshell of the Hydrogen atom: r Y(r, 0, 0) = A(Z) θ, φ) 2 r e 3ao sin² (0) e²i зао where A and ao are constants. Using the operator for the z-component of orbital angular momentum (L₂ = -ih d/do) determine the m, for this particular orbital. (e) Consider the wavefunction, r r Y(r,0,0) = A-e 2do cos(0) do (i) Identify the radial part of this orbital function and the number of radial nodes. (ii) Identify the angular part of the orbital function and the number of angular nodes. Z (iii) Using this information and the L₂ = -ih d/do operator obtain the n, 1, and, m quantum numbers and identify the orbital.arrow_forwardPlease asaparrow_forward
- Consider an electron is in the level of n= 2 for hydrogen atom. Calculate its angular momentum. (A) 5л h (В) 2h (C) h (D) -arrow_forwardConsider the seventh excited level of the hydrogen atom. (a) What is the energy of this level? (b) What is the largest magnitude of the orbital angular momentum? (c) What is the largest angle between the orbital angular momentum and the z-axis?arrow_forwardIt may be argued on theoretical grounds that the radius of the hydrogen atom should depend only on the fundamental constants h, e, the electrostatic force constant k = 1/4πℰ0, and m (the electron’s mass). Use dimensional analysis to show that the combination of these factors that yields a result with dimensions of length is h2kme2.arrow_forward
- (a) How much energy is required to cause an electron in hydrogen to move from the n = 2 state to the n = 5 state? in J(b) Suppose the atom gains this energy through collisions among hydrogen atoms at a high temperature. At what temperature would the average atomic kinetic energy 3/2 * kBT be great enough to excite the electron? Here kB is Boltzmann's constant. in Karrow_forward(a) How much energy is required to cause an electron in hydrogen to move from the n = 2 state to the n = 5 state?in J(b) Suppose the atom gains this energy through collisions among hydrogen atoms at a high temperature. At what temperature would the average atomic kinetic energy 3/2 * kBT be great enough to excite the electron? Here kB is Boltzmann's constant. in Karrow_forwardAn electron is in an angular momentum state with /= 3. (a) What is the length of the electron's angular momen- tum vector? (b) How many different possible z compo- nents can the angular momentum vector have? List the possible z components. (c) What are the values of the angle that the L vector makes with the z axis?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning