University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.25E
To determine
The energy difference between the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the energy difference between the ms = 1/ 2 (“spin up”) and ms = - 1 /2 (“spin down”) levels of a hydrogen atom in the 1s state when it is placed in a 1.45 T magnetic field in the negative z@direction. Which level, ms = 1 /2 or ms = - 1/ 2 , has the lower energy?
a) Calculate the excitation energies for the 1s → 3p electron transition for the H-atom
and for the He+-ion. Calculate the energy values in joules.
b) What is the ionization energy (in eV) of H-atom in the 4d-state?
Note: En
=
2n²
Eh, 1Eh
= 27.2114eV =
2625.500kJ/mol = 4.35974394-10-18 J
where ?∞ = 1.097 × 10^7 m−1is the Rydberg constant and ? is the atomic number (thenumber of protons found in the nucleus). Calculate the ground state energy of a triplyionised beryllium atom, Be3+ (a beryllium atom with three electrons removed).
Chapter 41 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the original Stern–Gerlach experiment employing an atomic beam of silver, for which the magnetic moment is due entirely to the spin of the single valence electron of the silver atom. Assuming the magnetic field B has magnitude 0.500 T, compute the energy difference in electron volts of the silver atoms in the two exiting beams.arrow_forwardThe valence election of potassium is excited to a 5d state, (a) What is the magnitude of the election's orbital angular momentum? (b) How many states are possible along a chosen direction?arrow_forwardFor a one-electron atom or ion, spinorbit coupling splits all states except s states into doublets. Why are s states exceptions to this rule?arrow_forward
- Measurements made on the line spectrum emitted by a certain atom of intermediate Z show that the ratio of the separation energies between three adjacent levels of increasing energy in a particular multiplet is approximately 3 to 5 (that is the energy difference between the second and the third member of the multiplet is 5/3 of the energy difference between the first and the second member of the multiplet.) a) What are the j' quantum number that can be assigned to these states? b) What is the l' quantum number that can be assigned to these states? c) What is the s' quantum number that can be assigned to these states?arrow_forwardCalculate the Landé factors gj of the base states of the following atoms: nickel (3d³4s²), molybdenum (4d55s) and gadolinium (4ƒ75d6s²). Make a diagram of the behavior of the energy levels as a function of the external magnetic field for small fields.arrow_forwardWhile studying the spectrumn of a gas doud in space, an astronomer magnifies a spectral line that results from a transition from a p state to an s state, She finds that the line at 575.050 nm has actually split into three lines, with adjacent lines 4.70 x 10- nm apart, indicating that the gas is in an external magnetic field. (Ignore effects due to electron spin.) What is the strength of the external magnetic field? O B=3.25 T OB-2.98 T O B=2.79 T O B=3.05 T OB=2.05 Tarrow_forward
- Hydrogen gas can be placed inside a strong magnetic field B=12T. The energy of 1s electron in hydrogen atom is 13.6 eV ( 1eV= 1.6*10 J ). a) What is a wavelength of radiation corresponding to a transition between 2p and 1s levels when magnetic field is zero?arrow_forwardNo handarrow_forwardThe moment of inertia of an H2O molecule about an axis bisecting the HOH angle is 1.91 x 10-47 kg m2 Its minimum angular momentum about that axis (other than zero) is h. In classical terms. how many revolutions per second do the H atoms make about the axis when in that state? What is the minimum energy needed to excite the rotation of an H2O molecule about the axis?arrow_forward
- What is the difference in energy between two states (n = 1; n = 2) of the Fe atom that originates this transition? What is the corresponding energy difference for the hydrogen atom? use this equation to calculate the energy difference ΔΕ 327²e}h’n²arrow_forwardEnumerate and identify the states corresponding to the energy level E34, or n = 3, 1 = 2.arrow_forwardSuppose that an atom has (a) 4, (b) 5 electrons in different orbitals. What are the possible values of the total spin quantum number S? What is the multiplicity in each case.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax