University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.10DQ
To determine
why central field approximation is more accurate for alkali metals than for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A metal has a density of 10.22 g/cm, atomic weight of 95.94 g/mole and atomic radius of 0.136 nm. Is it BCC or FCC? Justify your answer.
Plot the electron distribution function N(E) versus energy in a metal at (a) T = 0 K and (b) T = 300 K.
3. Atomic vibrations in a metal. Consider point ions of mass M and charge e immersed
in a uniform sea of conduction electrons. The ions are imagined to be in stable
equilibrium when at regular lattice points. If one ion is displaced a small distance r
from its equilibrium position, the restoring force is largely due to the electric charge
within the sphere of radius r centered at the equilibrium position. Take the number
density of ions (or of conduction electrons ) as 3/(47R³), which defines R. (a) Show
that the frequency of a single ion set into oscillation is @= (e²/MR³) ¹/2. (b)
Estimate the value of this frequency for sodium, roughly. (c) From (a), (b), and some
common sense, estimate the order of magnitude of the velocity of sound in metal.
Chapter 41 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The valence election of chlorine is excited to a 3p state, (a) What is the magnitude of the election's orbital angular momentum? (b) What are possible values for the z-component of angular’ measurement?arrow_forwardK:54)arrow_forwardQ2:- Germanium is doped with 6 x105 donor atoms per cm3 at T = 300 K. The dimensions of the Hall device are d 5 x 103 cm, W= 2 x 102 cm, and L= 10' cm. The current is Ix =350 µA, the applied voltage is Vx= 150 mV, and the magnetic flux density is B2= 500 gauss= 4 x102 tesla. Calculate: (a) the Hall voltage, (b) the Hall field, and (c) the carrier mobilityarrow_forward
- Calculate the radius of a nickel atom in cm, given that Ni has an FCC crystal structure, a density of 7.982 g/cm³, and an atomic weight of 58.69 g/mol.arrow_forwardFigure below shows the first four peaks of the x-ray diffraction pattern for copper, which has an FCC crystal structure; monochromatic x-radiation having a wavelength of 0.1542 nm was used. Intensity (relative) 40.0 Peak 1: Peak 2: Peak 3: 50.0 Peak 4: 70.0 Diffraction angle 20 a) Index (i.e., give h, and I indices) for each of these peaks. 60.0 Diffraction pattern for polycrystalline copper. 80.0 90.0arrow_forwardThe forbidden energy bandgap of AIP is 2.43 eV. Determine the wavelength (in nm) of an incident photon that can interact with a valence electron and elevate the electron into the conduction band. Oλ = 511 nm Oλ = 419 nm O λ = 882 nm λ = 575 nmarrow_forward
- Nickel frequently occurs as Ni2 salts with a fine-structure constant of a = 630 cm-1. Determine the energy (in joules) for a single 3d electron to flip between possible j states.arrow_forwardFor a K*- CH ion pair, attractive and repulsive energies EA and ER, respectively, depend on the distance between the ions r, according to 5.8 x 10-6 1.436 EA and ER For these expressions, energies are expressed in electron volts per K*- CH pair, and r is the distance in nanometers. a) If the net energy EN is just the sum of the two expressions above: EN = E, + ER, Find the values of ro and E, ? b) If curves of E, ER, and EN are plotted in given figure, compare the calculated values of ro and E, with that from the graph. 2 am 0.00 010 0.20 0.30 040 0.70 00 1.00 Interatomic Separation, nm Bonding Energy, eVarrow_forward(50/100) 2. When a phosphorus atom is substituted for a silicon atom in a crystal, four of the phosphorus valence electrons form bonds with neighboring atoms and the remaining electron is much more loosely bound. You can model the electron as free to move through the crystal lattice. The phosphorus nucleus has one more positive charge than does the silicon nucleus, however, so the extra electron provided by the phosphorus atom is attracted to this single nuclear charge +e. The energy levels of the extra electron are similar to those of the electron in the Bohr hydrogen atom with two important exceptions. First, the Coulomb attraction between the electron and the positive charge on the phosphorus nucleus is reduced by a factor of 1/k from what it would be in free space, where k is the dielectric constant of the crystal. As a result, the orbit radii are greatly increased over those of the hydrogen atom. Second, the influence of the periodic electric potential of the lattice causes the…arrow_forward
- You are preparing to compete in the Physics Olympics. Your instructor is coaching you by providing you with challenging problems of the type you might see on an Olympics exam. He comes up with the following problem and gives you 15 minutes to solve it: Imagine a perfectly rigid HCl molecule that does not stretch as it rotates. The equilibrium separation of its ions is 0.127 5 nm. There are two isotopes for chlorine on the sample, Cl-35 and Cl-37. This results in double peaks in the molecular spectrum as shown. (a) Find an expression for the difference in the frequency between the peaks to the right of the gap as a function of the masses of the two chlorine isotopes and the quantum number J. (b) Estimate the difference in frequency numerically for J = 0, without consulting tables. Quick! Get to work!arrow_forwardIn a block of Cobalt/iron alloy, it is suspected that the Cobalt (Z 27) is very poorly mixed with the iron (Z 26). Given that the ionization energy of hydrogen is 13.6 eV predict the energies of the K absorption edges of the constituents of the alloy. = =arrow_forward5.47 Germanium is doped with 5 × 10¹5 donor atoms per cm³ at T = 300 K. The dimen- sions of the Hall device are d = 5 x 10-³ cm, W = 2 × 10-² cm, and L = 10-¹ cm. The current is I = 250 μA, the applied voltage is V. = 100 mV, and the magnetic flux density is B₂ = 500 gauss = 5 x 10-2 tesla. Calculate: (a) the Hall voltage, (b) the Hall field, and (c) the carrier mobility.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Atomic Number, Atomic Mass, and the Atomic Structure | How to Pass ChemistryThe Nucleus: Crash Course Chemistry #1; Author: Crash Course;https://www.youtube.com/watch?v=FSyAehMdpyI;License: Standard YouTube License, CC-BY