Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 90P
Summary Introduction
To determine: The maximum expected return on the portfolio on the basis of the constraints given.
Linear programming:
It is a mathematical modeling procedure where a linear function is maximized or minimized subject to certain constraints. This method is widely useful in making a quantitative analysis which is essential for making important business decisions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are also given the following table of average returns over the last 50 years:
Stocks
T-Bonds
T-Bills
Arithmetic
Geometric
Arithmetic
Geometric
Arithmetic
Geometric
0.118
0.107
0.064
0.058
0.041
0.039
If you were asked to compute the equity risk premium for Steel Products, using the historical
approach, what would your best estimate be?
The largest investor in Steel Products is the owner/founder who owns 20% of the stock. Is she also the
marginal investor in this stock? If your answer is yes write 1 and if your answer is No write 2 in the box.
Portfolio Management If x dollars are invested in a company that controls, say, 30% of the market with five brand-names, then 0.30x is a measure of market exposure and 5x is a measure of brand-name exposure. Now suppose you
are a broker at a large securities firm, and one of your clients would like to invest up to $500,000 in recording industry stocks. You decide to recommend a combination of stocks in four of the world's largest recording companies:
Warner Music, Universal Music, Sony, and EMI. (See the table.)+
Market Share
Number of Labels (Brands)
Warner Music
12%
8
Universal Music
20%
20
Sony EMI
20%
10
15%
15
You would like your client to maximize his total market exposure but limit his brand-name exposure to 7.5 million or less (representing an average of 15 labels or fewer per company), and still invest at least 20% of the total in Universal
because you feel that its control of the DGG and Phillips labels is advantageous for its classical music operations. How much should you…
9) Today is your 20th birthday. Your parents just gave you $5,000 that you plan to use to open a stock brokerage account. Your plan is to add $500 to the account each year on your birthday. Your first $500 contribution will come one year from now on your 21st birthday. Your 45th and final $500 contribution will occur on your 65th birthday. You plan to withdraw $5,000 from the account five years from now on your 25th birthday to take a trip to Europe. You also anticipate that you will need to withdraw $10,000 from the account 10 years from now on your 30th birthday to take a trip to Asia. You expect that the account will have an average annual return of 12 percent. How much money do you anticipate that you will have in the account on your 65th birthday, following your final contribution?
Chapter 4 Solutions
Practical Management Science
Ch. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10P
Ch. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.4 - Prob. 13PCh. 4.4 - Prob. 14PCh. 4.4 - Prob. 15PCh. 4.4 - Prob. 16PCh. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - Prob. 19PCh. 4.5 - Prob. 20PCh. 4.5 - Prob. 21PCh. 4.5 - Prob. 22PCh. 4.5 - Prob. 23PCh. 4.5 - Prob. 24PCh. 4.5 - Prob. 25PCh. 4.6 - Prob. 26PCh. 4.6 - Prob. 27PCh. 4.6 - Prob. 28PCh. 4.6 - Prob. 29PCh. 4.7 - Prob. 30PCh. 4.7 - Prob. 31PCh. 4.7 - Prob. 32PCh. 4.7 - Prob. 33PCh. 4.7 - Prob. 34PCh. 4.7 - Prob. 35PCh. 4.7 - Prob. 36PCh. 4.7 - Prob. 37PCh. 4.7 - Prob. 38PCh. 4.7 - Prob. 39PCh. 4.7 - Prob. 40PCh. 4.8 - Prob. 41PCh. 4.8 - Prob. 42PCh. 4.8 - Prob. 43PCh. 4.8 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - You want to take out a 450,000 loan on a 20-year...Ch. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- You are considering a 10-year investment project. At present, the expected cash flow each year is 10,000. Suppose, however, that each years cash flow is normally distributed with mean equal to last years actual cash flow and standard deviation 1000. For example, suppose that the actual cash flow in year 1 is 12,000. Then year 2 cash flow is normal with mean 12,000 and standard deviation 1000. Also, at the end of year 1, your best guess is that each later years expected cash flow will be 12,000. a. Estimate the mean and standard deviation of the NPV of this project. Assume that cash flows are discounted at a rate of 10% per year. b. Now assume that the project has an abandonment option. At the end of each year you can abandon the project for the value given in the file P11_60.xlsx. For example, suppose that year 1 cash flow is 4000. Then at the end of year 1, you expect cash flow for each remaining year to be 4000. This has an NPV of less than 62,000, so you should abandon the project and collect 62,000 at the end of year 1. Estimate the mean and standard deviation of the project with the abandonment option. How much would you pay for the abandonment option? (Hint: You can abandon a project at most once. So in year 5, for example, you abandon only if the sum of future expected NPVs is less than the year 5 abandonment value and the project has not yet been abandoned. Also, once you abandon the project, the actual cash flows for future years are zero. So in this case the future cash flows after abandonment should be zero in your model.)arrow_forwardSuppose you begin year 1 with 5000. At the beginning of each year, you put half of your money under a mattress and invest the other half in Whitewater stock. During each year, there is a 40% chance that the Whitewater stock will double, and there is a 60% chance that you will lose half of your investment. To illustrate, if the stock doubles during the first year, you will have 3750 under the mattress and 3750 invested in Whitewater during year 2. You want to estimate your annual return over a 30-year period. If you end with F dollars, your annual return is (F/5000)1/30 1. For example, if you end with 100,000, your annual return is 201/30 1 = 0.105, or 10.5%. Run 1000 replications of an appropriate simulation. Based on the results, you can be 95% certain that your annual return will be between which two values?arrow_forwardSuppose you currently have a portfolio of three stocks, A, B, and C. You own 500 shares of A, 300 of B, and 1000 of C. The current share prices are 42.76, 81.33, and, 58.22, respectively. You plan to hold this portfolio for at least a year. During the coming year, economists have predicted that the national economy will be awful, stable, or great with probabilities 0.2, 0.5, and 0.3. Given the state of the economy, the returns (one-year percentage changes) of the three stocks are independent and normally distributed. However, the means and standard deviations of these returns depend on the state of the economy, as indicated in the file P11_23.xlsx. a. Use @RISK to simulate the value of the portfolio and the portfolio return in the next year. How likely is it that you will have a negative return? How likely is it that you will have a return of at least 25%? b. Suppose you had a crystal ball where you could predict the state of the economy with certainty. The stock returns would still be uncertain, but you would know whether your means and standard deviations come from row 6, 7, or 8 of the P11_23.xlsx file. If you learn, with certainty, that the economy is going to be great in the next year, run the appropriate simulation to answer the same questions as in part a. Repeat this if you learn that the economy is going to be awful. How do these results compare with those in part a?arrow_forward
- The IRR is the discount rate r that makes a project have an NPV of 0. You can find IRR in Excel with the built-in IRR function, using the syntax =IRR(range of cash flows). However, it can be tricky. In fact, if the IRR is not near 10%, this function might not find an answer, and you would get an error message. Then you must try the syntax =IRR(range of cash flows, guess), where guess" is your best guess for the IRR. It is best to try a range of guesses (say, 90% to 100%). Find the IRR of the project described in Problem 34. 34. Consider a project with the following cash flows: year 1, 400; year 2, 200; year 3, 600; year 4, 900; year 5, 1000; year 6, 250; year 7, 230. Assume a discount rate of 15% per year. a. Find the projects NPV if cash flows occur at the ends of the respective years. b. Find the projects NPV if cash flows occur at the beginnings of the respective years. c. Find the projects NPV if cash flows occur at the middles of the respective years.arrow_forwardIf you own a stock, buying a put option on the stock will greatly reduce your risk. This is the idea behind portfolio insurance. To illustrate, consider a stock that currently sells for 56 and has an annual volatility of 30%. Assume the risk-free rate is 8%, and you estimate that the stocks annual growth rate is 12%. a. Suppose you own 100 shares of this stock. Use simulation to estimate the probability distribution of the percentage return earned on this stock during a one-year period. b. Now suppose you also buy a put option (for 238) on the stock. The option has an exercise price of 50 and an exercise date one year from now. Use simulation to estimate the probability distribution of the percentage return on your portfolio over a one-year period. Can you see why this strategy is called a portfolio insurance strategy? c. Use simulation to show that the put option should, indeed, sell for about 238.arrow_forwardThe Schoch Museum (see Problem 30 in Chapter 11) is embarking on a five-year fundraising campaign. As a nonprofit institution, the museum finds it challenging to acquire new donors, as many donors do not contribute every year. Suppose that the museum has identified a pool of 8,000 potential donors. The actual number of donors in the first year of the campaign is estimated to be somewhere between 60% and 75% of this pool. For each subsequent year, the museum expects that a certain percentage of current donors will discontinue their contributions. This is expected to be between 10% and 60%, with a most likely value of 35%. In addition, the museum expects to attract some percentage of new donors. This is assumed to be between 5% and 40% of the current year’s donors, with a most likely value of 10%. The average contribution in the first year is assumed to be $50 and will increase at a rate between 0% and 8% each subsequent year, with the most likely increase of 2.5%. Develop and analyze a…arrow_forward
- Eight years ago, Burt Brownlee purchased a government bond that pays 3.60 percent interest. The face value of the bond was $1,000. What is the dollar amount of annual interest that Burt received from his bond investment each year? Assuming that comparable bonds are now paying 2.40 percent, will Burt's bond increase or decrease in value? Why did the bond increase or decrease in value?arrow_forwardUse excel for this problem A trust officer at the Blacksburg National Bank needs to determine how to invest $150,000 in the following collection of bonds to maximize the annual return. Bond Annual Return Maturity Risk Tax Free A 9.5% Long High Yes B 8.0% Short Low Yes C 9.0% Long Low No D 9.0% Long High Yes E 9.0% Short High No The officer wants to invest at least 40% of the money in short-term issues and no more than 20% in high-risk issues. At least 25% of the funds should go in tax-free investments, and at least 45% of the total annual return should be tax free. Formulate the LP model for this problem. Create the spreadsheet model and use Solver to solve the problem.arrow_forwardCompany A's stock sells for $142 a share and has a 3-year average annual return of $27 per share. The beta value, a measure of risk, is 0.38. Company B sells for $149 a share and has a 3-year average annual return of $61 a share. The beta value is 1.23. Tori wants to spend no more than $12000 investing in these two stocks, but she wants to obtain at least $3000 in annual revenue. Tori also wants to minimize the risk, that is, the beta value. Determine how many shares of each stock Tori should buy.arrow_forward
- There are three investments, B1, B2 and B3. All of them have the same expected value and each with two possible payoffs. The payoffs from investment B1 are independent from payoffs from B2 and B3. The payoffs from B2 and B3 are perfectly negatively correlated, which means that when B2 has a high payoff, B3 has a low payoff, and vice versa. An investor has only $800 to invest. Find the investment strategy that minimizes the risk. Hint: It may be easier to think of the following situation. Let events F and G be independent. The following is given: Payoff from investing $100 in either B2 or B3 В $100 $140 Cases B3 Probability event F happens event F does not happen $140 $100 0.5 0.5 and Payoff from investing $100 in BỊ Cases В Probability $100 event G happens event G does not happen $140 0.5 0.5arrow_forwardTwo years ago, you purchased 171 shares of IBM stock for $104 a share. Today, you sold your IBM stock for $111 a share. For this problem, ignore commissions that would be charged to buy and sell your IBM shares and dividends you might have received as a shareholder. What is the amount of profit you earned on each share of IBM stock? What is the total amount of profit for your IBM investment?arrow_forwardMy current income is $40,000. I believe that I owe$8,000 in taxes. For $500, I can hire a CPA to review mytax return; there is a 20% chance that she will saveme $4,000 in taxes. My utility function for (disposableincome) (current income) (taxes) (payment toaccountant) is given by x where x is disposable income.Should I hire the CPA?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,