Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 64P
Summary Introduction
To determine: The way to maximize the profit of the company.
Linear programming:
It is a mathematical modeling procedure where a linear function is maximized or minimized subject to certain constraints. This method is widely useful in making a quantitative analysis which is essential for making important business decisions.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Barbara Flynn sells papers at a newspaper stand for $0.40. The papers cost her $0.30, giving her a $0.10 profit on each one she sells. From past experience Barbara
knows that:
a) 20% of the time she sells 150 papers.
b) 20% of the time she sells 200 papers.
c) 30% of the time she sells 250 papers.
d) 30% of the time she sells 300 papers.
Assuming that Barbara believes the cost of a lost sale to be $0.05 and any unsold papers cost her $0.30 and she orders 250 papers.
Use the following random numbers: 14, 4, 13, 9, and 25 for simulating Barbara's profit. (Note: Assume the random number interval begins at 01 and ends at 00.)
Based on the given probability distribution and the order size, for the given random number Barbara's sales and profit are (enter your responses for sales as integers
and round all profit responses to two decimal places):
Random Number
Sales
Profit
14
4
13
9
25
A company owns a 5-year-old turret lathe that has a book value of $23,000. The present market value for the lathe is $18,000. The expected decline in market value is $1,700/year to a minimum market value of $4,080; maintenance plus operating costs for the lathe equal $4,470/year.A new turret lathe can be purchased for $46,000 and will have an expected life of 8 years. The market value for the turret lathe is expected to equal $46,000(0.70)k at the end of year k. Annual maintenance and operating cost is expected to equal $1,900. Based on a 12% MARR, should the old lathe be replaced now? Use an equivalent uniform annual cost comparison, a planning horizon of 7 years, and the cash flow approach.EUAC for keeping old turret lathe: $EUAC for replacing turret lathe: $
A retail store sold in the month of April 5,000 products that produced $45,000 in sales. In the month of
May the company sold 6,000 products. The store workforce consists of four full-time workers who work 40-hour week.
In April the store also had seven part-time workers at 10 hours per week, and in May the store had nine part-timers at 15
hours per week (assume four weeks in each month). Using sales dollars as the measure of output (assume the price of the
product was the same for both months), what is the percentage change in labor productivity from April to May?
Answer:
2.
Chapter 4 Solutions
Practical Management Science
Ch. 4.2 - Prob. 1PCh. 4.2 - Prob. 2PCh. 4.2 - Prob. 3PCh. 4.2 - Prob. 4PCh. 4.2 - Prob. 5PCh. 4.2 - Prob. 6PCh. 4.3 - Prob. 7PCh. 4.3 - Prob. 8PCh. 4.3 - Prob. 9PCh. 4.3 - Prob. 10P
Ch. 4.3 - Prob. 11PCh. 4.3 - Prob. 12PCh. 4.4 - Prob. 13PCh. 4.4 - Prob. 14PCh. 4.4 - Prob. 15PCh. 4.4 - Prob. 16PCh. 4.4 - Prob. 17PCh. 4.4 - Prob. 18PCh. 4.4 - Prob. 19PCh. 4.5 - Prob. 20PCh. 4.5 - Prob. 21PCh. 4.5 - Prob. 22PCh. 4.5 - Prob. 23PCh. 4.5 - Prob. 24PCh. 4.5 - Prob. 25PCh. 4.6 - Prob. 26PCh. 4.6 - Prob. 27PCh. 4.6 - Prob. 28PCh. 4.6 - Prob. 29PCh. 4.7 - Prob. 30PCh. 4.7 - Prob. 31PCh. 4.7 - Prob. 32PCh. 4.7 - Prob. 33PCh. 4.7 - Prob. 34PCh. 4.7 - Prob. 35PCh. 4.7 - Prob. 36PCh. 4.7 - Prob. 37PCh. 4.7 - Prob. 38PCh. 4.7 - Prob. 39PCh. 4.7 - Prob. 40PCh. 4.8 - Prob. 41PCh. 4.8 - Prob. 42PCh. 4.8 - Prob. 43PCh. 4.8 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62PCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67PCh. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - Prob. 71PCh. 4 - Prob. 72PCh. 4 - Prob. 73PCh. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Prob. 77PCh. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - You want to take out a 450,000 loan on a 20-year...Ch. 4 - Prob. 82PCh. 4 - Prob. 83PCh. 4 - Prob. 84PCh. 4 - Prob. 85PCh. 4 - Prob. 86PCh. 4 - Prob. 87PCh. 4 - Prob. 88PCh. 4 - Prob. 89PCh. 4 - Prob. 90PCh. 4 - Prob. 91PCh. 4 - Prob. 92PCh. 4 - Prob. 93PCh. 4 - Prob. 94PCh. 4 - Prob. 95PCh. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - Prob. 98PCh. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - Prob. 106PCh. 4 - Prob. 107PCh. 4 - Prob. 108PCh. 4 - Prob. 109PCh. 4 - Prob. 110PCh. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - Prob. 114PCh. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - Prob. 117PCh. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124PCh. 4 - Prob. 125PCh. 4 - Prob. 126PCh. 4 - Prob. 127PCh. 4 - Prob. 128PCh. 4 - Prob. 129PCh. 4 - Prob. 130PCh. 4 - Prob. 131PCh. 4 - Prob. 132PCh. 4 - Prob. 133PCh. 4 - Prob. 134PCh. 4 - Prob. 135P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- In this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?arrow_forwardAssume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forward
- The Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.arrow_forwardYou now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forwardThe game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.arrow_forward
- At the beginning of each week, a machine is in one of four conditions: 1 = excellent; 2 = good; 3 = average; 4 = bad. The weekly revenue earned by a machine in state 1, 2, 3, or 4 is 100, 90, 50, or 10, respectively. After observing the condition of the machine at the beginning of the week, the company has the option, for a cost of 200, of instantaneously replacing the machine with an excellent machine. The quality of the machine deteriorates over time, as shown in the file P10 41.xlsx. Four maintenance policies are under consideration: Policy 1: Never replace a machine. Policy 2: Immediately replace a bad machine. Policy 3: Immediately replace a bad or average machine. Policy 4: Immediately replace a bad, average, or good machine. Simulate each of these policies for 50 weeks (using at least 250 iterations each) to determine the policy that maximizes expected weekly profit. Assume that the machine at the beginning of week 1 is excellent.arrow_forwardThe annual maintenance costs of a machine that has been in use for 3 years are 300 TL, 350 TL and 375 TL, respectively. The machine is expected to be available for 8 years after purchase. The maintenance costs foreseen for the coming years are 400 TL in the first year and 150 TL in the following years. If the machine is sold today, it can be sold for 1500 TL, and in the following years for 1000 TL. What is the optimum regeneration time of the machine if the MCVO is 10%?arrow_forwardThere is an upstream Picking department that feeds two downstream Packing departments: Pack Singles and Pack Multis. Those Packing departments feed to a Shipping department that loads the outgoing trucks. 40% of your Pick volume goes to Pack Singles and has a packing rate of 104 units per labor hour (uph). 60% of the Pick volume goes to Pack Multis and has a pack rate of 215 units per labor hour. Your pickers pick both Single and Multi items throughout the day at an overall average rate of 114 units per labor hour. All units that are packed in both processes go through the Ship process at a rate of 570 units per hour. You have 102 people today for all 4 departments and you absolutely must pack 47,880 units in Pack Multis Items to meet a customer promise metric. How do you allocate labor to balance the flow in your department if you work a 10 hour shift? Do not assume breaks or lunches in your answer. Redirect 1: You now need to process all of the Pack Singles Volume in the first 5…arrow_forward
- During an eight-hour shift, 750 non-defective parts are desired as a result of a manufacturing operation. The default operation time is 15 minutes. As the operators of machine are inexperienced, the actual time they take to perform the operation is 20 minutes, and, on average, a fifth of the parts that start to be manufactured are lost. Assuming that each one of the machines used in this operation will not be available for one hour in each shift, determine the number of machines needed.arrow_forwardIf the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's modulus..If the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's Modulus If the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's modulus...?arrow_forwardWhich of the following statements is correct regarding the EMH form? Select one: None of the answers are correct If the market is weak-form efficient, then it is also semistrong and strong-form efficient. If the market is semistrong form efficient, then it is also strong form efficient If a market is strong-form efficient, it is also semistrong and weak form efficient If the market is strong-form efficient, it is also semistrong but not weak-form efficientarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,