Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
8th Edition
ISBN: 9780134421377
Author: Charles H Corwin
Publisher: PEARSON
bartleby

Videos

Question
Book Icon
Chapter 4, Problem 84E
Interpretation Introduction

(a)

Interpretation:

The orbital out of 2s and 3s that has larger size is to be identified.

Concept introduction:

An atom is made up of three subatomic particles-neutrons, protons, and electrons. Neutrons and protons are present in the nucleus of the atom, whereas electrons are revolving outside the nucleus in an atom. The electrons are arranged in the subshell of atoms according to their energy. The orbital with lower energy will fill first than the orbital with higher energy.

Expert Solution
Check Mark

Answer to Problem 84E

The orbital 3s has a larger size than 2s orbital.

Explanation of Solution

The size of orbital depends on the energy level.

The value of energy level for 3s is 3.

The value of energy level for 2s is 2.

The orbital that has higher value of energy level will have larger size than the orbital with a lower value of energy level.

The orbital 3s has a higher value of energy level than 2s orbital. Therefore, the orbital 3s has a larger size than 2s orbital.

Conclusion

The orbital 3s has a larger size than 2s orbital.

Interpretation Introduction

(b)

Interpretation:

The orbital out of 2px and 3px that has larger size is to be identified.

Concept introduction:

An atom is made up of three subatomic particles-neutrons, protons, and electrons. Neutrons and protons are present in the nucleus of the atom, whereas electrons are revolving outside the nucleus in an atom. The electrons are arranged in the subshell of atoms according to their energy. The orbital with lower energy will fill first than the orbital with higher energy.

Expert Solution
Check Mark

Answer to Problem 84E

The orbital 3px has a larger size than 2px orbital.

Explanation of Solution

The size of orbital depends on the energy level.

The value of energy level for 3px is 3.

The value of energy level for 2px is 2.

The orbital that has higher value of energy level will have larger size than the orbital with a lower value of energy level.

The orbital 3px has a higher value of energy level than 2px orbital. Therefore, the orbital 3px has a larger size than 2px orbital.

Conclusion

The orbital 3px has a larger size than 2px orbital.

Interpretation Introduction

(c)

Interpretation:

The orbital out of 2px and 2py that has larger size is to be identified.

Concept introduction:

An atom is made up of three subatomic particles-neutrons, protons, and electrons. Neutrons and protons are present in the nucleus of the atom, whereas electrons are revolving outside the nucleus in an atom. The electrons are arranged in the subshell of atoms according to their energy. The orbital with lower energy will fill first than the orbital with higher energy.

Expert Solution
Check Mark

Answer to Problem 84E

The orbital 2px and 2py have the same size.

Explanation of Solution

Degenerate orbitals are the orbitals that have the same energy.

The value of energy level for 2px is 2.

The value of energy level for 2py is 2.

The energy level for both orbitals is the same and both belong to the same subshell p. All the three p-orbitals have the same size. Therefore, the orbitals 2px and 2py have the same size.

Conclusion

The orbital 2px and 2py have the same size.

Interpretation Introduction

(d)

Interpretation:

The orbital out of 4py and 4pz that has larger size is to be identified.

Concept introduction:

An atom is made up of three subatomic particles-neutrons, protons, and electrons. Neutrons and protons are present in the nucleus of the atom, whereas electrons are revolving outside the nucleus in an atom. The electrons are arranged in the subshell of atoms according to their energy. The orbital with lower energy will fill first than the orbital with higher energy.

Expert Solution
Check Mark

Answer to Problem 84E

The orbital 4pz and 4py have the same size.

Explanation of Solution

Degenerate orbitals are the orbitals that have the same energy.

The value of energy level for 4py is 4.

The value of energy level for 4pz is 4.

The energy level for both orbitals is the same and both belong to the same subshell p. All the three p-orbitals have the same size. Therefore, the orbital 4pz and 4py have the same size.

Conclusion

The orbital 4pz and 4py have the same size.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that NH3 is a weak base. acids: ☐ 1.8 mol of HCl is added to 1.0 L of a 1.0M NH3 bases: ☐ solution. other: ☐ 0.18 mol of HNO3 is added to 1.0 L of a solution that is 1.4M in both NH3 and NH₁Br. acids: bases: ☐ other: ☐ 0,0,... ? 000 18 Ar B 1
Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?
Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. 2.2 mol of NaOH is added to 1.0 L of a 1.4M HF solution. acids: П bases: Х other: ☐ ப acids: 0.51 mol of KOH is added to 1.0 L of a solution that is bases: 1.3M in both HF and NaF. other: ☐ 00. 18 Ar

Chapter 4 Solutions

Introductory Chemistry: Concepts and Critical Thinking (8th Edition)

Ch. 4 - Prob. 11CECh. 4 - Prob. 12CECh. 4 - Prob. 1KTCh. 4 - Prob. 2KTCh. 4 - Prob. 3KTCh. 4 - Prob. 4KTCh. 4 - Prob. 5KTCh. 4 - Prob. 6KTCh. 4 - Prob. 7KTCh. 4 - Prob. 8KTCh. 4 - Prob. 9KTCh. 4 - Prob. 10KTCh. 4 - Prob. 11KTCh. 4 - Prob. 12KTCh. 4 - Prob. 13KTCh. 4 - Prob. 14KTCh. 4 - Prob. 15KTCh. 4 - Prob. 16KTCh. 4 - Prob. 17KTCh. 4 - Prob. 18KTCh. 4 - Prob. 19KTCh. 4 - Prob. 20KTCh. 4 - Prob. 21KTCh. 4 - Prob. 22KTCh. 4 - Prob. 23KTCh. 4 - Prob. 24KTCh. 4 - Prob. 25KTCh. 4 - Prob. 1ECh. 4 - Prob. 2ECh. 4 - Prob. 3ECh. 4 - Prob. 4ECh. 4 - Prob. 5ECh. 4 - Prob. 6ECh. 4 - Prob. 7ECh. 4 - Prob. 8ECh. 4 - Prob. 9ECh. 4 - Prob. 10ECh. 4 - Prob. 11ECh. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - Prob. 14ECh. 4 - Prob. 15ECh. 4 - Prob. 16ECh. 4 - Prob. 17ECh. 4 - Prob. 18ECh. 4 - Prob. 19ECh. 4 - Prob. 20ECh. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - Prob. 25ECh. 4 - Prob. 26ECh. 4 - Prob. 27ECh. 4 - Prob. 28ECh. 4 - Prob. 29ECh. 4 - Prob. 30ECh. 4 - Prob. 31ECh. 4 - Prob. 32ECh. 4 - Prob. 33ECh. 4 - Prob. 34ECh. 4 - Prob. 35ECh. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - Prob. 42ECh. 4 - Prob. 43ECh. 4 - Prob. 44ECh. 4 - Prob. 45ECh. 4 - Prob. 46ECh. 4 - Prob. 47ECh. 4 - Prob. 48ECh. 4 - Prob. 49ECh. 4 - Prob. 50ECh. 4 - Prob. 51ECh. 4 - Prob. 52ECh. 4 - Prob. 53ECh. 4 - Prob. 54ECh. 4 - Prob. 55ECh. 4 - Prob. 56ECh. 4 - Prob. 57ECh. 4 - Prob. 58ECh. 4 - Prob. 59ECh. 4 - Prob. 60ECh. 4 - Prob. 61ECh. 4 - Prob. 62ECh. 4 - Prob. 63ECh. 4 - Prob. 64ECh. 4 - Prob. 65ECh. 4 - Prob. 66ECh. 4 - Prob. 67ECh. 4 - Prob. 68ECh. 4 - Prob. 69ECh. 4 - Prob. 70ECh. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Prob. 73ECh. 4 - Prob. 74ECh. 4 - Prob. 75ECh. 4 - Prob. 76ECh. 4 - Prob. 77ECh. 4 - Prob. 78ECh. 4 - Prob. 79ECh. 4 - Prob. 80ECh. 4 - Prob. 81ECh. 4 - Prob. 82ECh. 4 - Prob. 83ECh. 4 - Prob. 84ECh. 4 - Prob. 85ECh. 4 - Prob. 86ECh. 4 - Prob. 87ECh. 4 - Prob. 88ECh. 4 - Prob. 89ECh. 4 - Prob. 90ECh. 4 - Prob. 91ECh. 4 - Prob. 92ECh. 4 - Prob. 93ECh. 4 - Prob. 94ECh. 4 - Prob. 95ECh. 4 - Prob. 96ECh. 4 - Prob. 97ECh. 4 - Prob. 98ECh. 4 - Prob. 1STCh. 4 - Prob. 2STCh. 4 - Prob. 3STCh. 4 - Prob. 4STCh. 4 - Prob. 5STCh. 4 - Prob. 6STCh. 4 - Prob. 7STCh. 4 - Prob. 8STCh. 4 - Prob. 9STCh. 4 - Prob. 10STCh. 4 - Prob. 11STCh. 4 - Prob. 12STCh. 4 - Prob. 13STCh. 4 - Prob. 14STCh. 4 - Prob. 15STCh. 4 - Prob. 16STCh. 4 - Prob. 17STCh. 4 - Prob. 18ST
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY