Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 7EAP
A rocket-powered hockey puck moves on a horizontal frictionless table. FIGURE EX4.7 shows graphs of vxand vy. the x- and v-components of the puck’s velocity. The puck starts at the origin. What is the magnitude of the puck’s acceleration at t =5 s?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need help with Q4. I can't figure out what equation I should use to find the velocity. I think it would be a combination of the velocity formulas for x and y but I'm not sure. My 4 simplified equations are:
1. Vxf = Vxi
2. (delta)x = Vxi * (delta)t
3. Vyf = 9.8 m/s^2 * (delta)t
4. (delta)y = 1/2(9.8 m/s^2) * (delta)t^2
For my data I have:
(delta)y = 0.6604 meters
(delta) t = 0.367 seconds
I don't need the answer or a long explanation, I really just can't figure out what equation/formula I need to use to find "the velocity of your object as it rolls off the incline and enters free-fall."
A rocket-powered hockey puck moves on a horizontal frictionless table. The figure shows the graphs of Vx and Vy, and the y components of the puck's velocity. The puck starts at the origin. What is the magnitude of the puck's acceleration at t=5s?
An object is thrown off the top of a building with velocity 32 m/s at an angle 34 degrees with respect to the horizontal. It takes 6.2 s for the object to land.
a. How high is the building in meters?
b. What is the horizontal distance that the object travels in meters?
Chapter 4 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 4 - a. At this instant, is the particle in FIGURE Q4.1...Ch. 4 - a. At this instant, is the particle in FIGURE Q4.2...Ch. 4 - Tarzan swings through the jungle by hanging from a...Ch. 4 - A projectile is launched at an angle of 30°. a. Is...Ch. 4 - For a projectile, which of the following...Ch. 4 - A cart that is rolling at constant velocity on a...Ch. 4 - A rock is thrown from a bridge at an angle 30°...Ch. 4 - Anita is running to the right at 5 m/s in FIGURE...Ch. 4 - An electromagnet on the ceiling of an airplane...Ch. 4 - Zack is driving past his house in FIGURE Q4.1O. He...
Ch. 4 - II. In FIGURE Q4.11. Yvette and Zack are driving...Ch. 4 - In uniform circular motion, which of the following...Ch. 4 - FIGURE Q4.13 shows three points on a steadily...Ch. 4 - FIGURE Q4.14 shows four rotating wheels. For each,...Ch. 4 - FIGURE Q4.15 shows a pendulum at one end point of...Ch. 4 - Problems I and 2 show a partial motion diagram....Ch. 4 - Prob. 2EAPCh. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - Prob. 8EAPCh. 4 - A particle moving in the xy- plane has velocity v...Ch. 4 - You have a remote-controlled car that has been...Ch. 4 - A ball thrown horizontally at 25 m/s travels a...Ch. 4 - A physics student on the Planet Exidor throws a...Ch. 4 - A supply plane needs to drop a package of food to...Ch. 4 - A rifle is aimed horizontally at a target 50 m...Ch. 4 - In the Olympic shotput event, an athlete throws...Ch. 4 - On the Apollo 14 mission to the moon, astronaut...Ch. 4 - A baseball player friend of yours wants to...Ch. 4 - A boat takes 3.0 hours to travel 30 km down a...Ch. 4 - When the moving sidewalk at the airport is broken,...Ch. 4 - Prob. 20EAPCh. 4 - A kayaker, needs to paddle north across a...Ch. 4 - Susan, driving north at 60 mph, and Trent, driving...Ch. 4 - FIGURE EX4.23 shows the...Ch. 4 - FIGURE EX4.24 shows the...Ch. 4 - FIGURE EX4.25 shows the...Ch. 4 - The earth’s radius is about 4000 miles. Kampala,...Ch. 4 - An old-fashioned single-play vinyl record rotates...Ch. 4 - As the earth mates, what is the speed of (a) a...Ch. 4 - How fast must a plane fly along the earth’s...Ch. 4 - A 3000-rn-high mountain is located on the equator....Ch. 4 - Peregrine falcons are known for their maneuvering...Ch. 4 - To withstand “g-forces” of up to 10 g’s, caused by...Ch. 4 - The radius of the earth’s very nearly circular...Ch. 4 - A speck of dust on a spinning DVD has a...Ch. 4 - Your roommate is working on his bicycle and has...Ch. 4 - I FIGURE EX4.36 shows the angular velocity graph...Ch. 4 - I FIGURE EX4.37 shows the angular acceleration...Ch. 4 - FIGURE EX4.38 shows the...Ch. 4 - A wheel initially rotating at 60 rpm experiences...Ch. 4 - A 5.0-rn-diameter merry-go-round is initially...Ch. 4 - An electric fan goes from rest to 1800 rpm in 4.0...Ch. 4 - A bicycle wheel is rotating at 50 rpm when the...Ch. 4 - Starting from rest, a DVD steadily accelerates to...Ch. 4 - A spaceship maneuvering near Planet Zeta is...Ch. 4 - equation reference goes here45. A particle moving...Ch. 4 - A projectile’s horizontal range over level ground...Ch. 4 - a. A projectile is launched with speed v0and angle...Ch. 4 - A projectile is launched from ground level at...Ch. 4 - A gray kangaroo can bound across level ground with...Ch. 4 - A ball is thrown toward a cliff of height h with a...Ch. 4 - A tennis player hits a ball 2.0 m above the...Ch. 4 - You are target shooting using a toy gun that fires...Ch. 4 - A 35 g steel ball is held by a ceiling-mounted...Ch. 4 - You are watching an archery tournament when you...Ch. 4 - You’re 6.0 m from one wall of the house seen in...Ch. 4 - Sand moves without slipping at 6.0 m/s down a...Ch. 4 - A stunt man drives a car at a speed of 20 m/s off...Ch. 4 - A javelin thrower standing at rest holds the...Ch. 4 - A rubber ball is dropped onto a ramp that is...Ch. 4 - You are asked to consult for the city’s research...Ch. 4 - Ships A and B leave port together. For the next...Ch. 4 - While driving north at 25 m/s during a rainstorm...Ch. 4 - You’ve been assigned the task of using a shaft...Ch. 4 - Prob. 64EAPCh. 4 - Prob. 65EAPCh. 4 - Astronauts use a centrifuge to simulate the...Ch. 4 - Communications satellites are placed in a circular...Ch. 4 - Prob. 68EAPCh. 4 - A high-speed drill rotating ccw at 2400 rpm comes...Ch. 4 - A turbine is spinning at 3800 rpm. Frication in...Ch. 4 - Prob. 71EAPCh. 4 - The angular velocity of a process control motor is...Ch. 4 - A Ferris wheel of radius R speeds up with angular...Ch. 4 - Prob. 74EAPCh. 4 - A painted tooth on a spinning gear has angular...Ch. 4 - A car starts from rest on a curve with radius of...Ch. 4 - Prob. 77EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - Prob. 79EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - In one contest at the country fair, seen in FIGURE...Ch. 4 - Prob. 82EAPCh. 4 - Prob. 83EAPCh. 4 - Prob. 84EAPCh. 4 - Prob. 85EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A fastball pitcher can throw a baseball at a speed of 40 m/s (90 mi/b). (a) Assuming the pitcher can release the ball 16.7 m from home plate so the ball is moving horizontally, how long does it take the ball to reach bone plate? (b) How far does the ball drop between the pitcher’s hand and home plate?arrow_forwardA rocket-powered hockey puck moves on a horizontal frictionless table. the figure(Figure 1) shows graphs of vx and vy, the x- and y-components of the puck's velocity. The puck starts at the origin. How far from the origin is the puck at t = 10 s ?arrow_forwardAn astronaut lands on a newly discovered planet (that has a nice gravitational constant). He proceeds to jump out of the spacecraft and onto the planet's surface. His height above the ground (in feet) after t seconds is given by the function h (t) =-3t2 +12t +36. A. How high off the ground is the astronaut after 1 second? B. What is the astronaut's velocity after 1 second? Is he traveling up or down? C. How fast is the astronaut traveling when he lands on the planet? D. When will the astronaut be at his highest point in the jump? E. Is the astronaut speeding up or slowing down after 2 seconds? At what rate?arrow_forward
- An airplane flies horizontally at a speed of 369 km/h and drops a crate that falls to the horizontal ground below. Neglect air resistance. A. If the altitude of the plane was 628 m, then how far, horizontally in meters, did the crate move as it fell to the ground? B. What was the speed of the crate, in m/s, just before it hit the ground?arrow_forwardAn aircraft performs a maneuver called an "aileron roll." During this maneuver, the plane turns like a screw as it maintains a straight flight path, which sets the wings in circular motion. If it takes it 21 s to complete the circle and the wingspan of the plane is 10.6 m, what is the acceleration of the wing tip? Express your answer in m/s².arrow_forwardI need help with this physics question #3arrow_forward
- A physics book slides off a horizontal table top with a speed of 1.20 m/s. It strikes the floor after a time of 0.410 s. Ignore air resistance. a. Find the magnitude of the book's velocity just before the book reaches the floor. b. Find the direction of the book's velocity just before the book reaches the floor.arrow_forwardA jet landing on an aircraft carrier comes in on solid ground with a speed of 100 m/s, and its acceleration can have a maximum magnitude of 5.0 m/s2 as it comes to rest a. From the instant the jet touches the runway, what is the minimum time interval needed before it can to rest? b. Can this jet land at a small tropical island airport where the runway is 0.8 km long?arrow_forwardfor A,B,and Carrow_forward
- A skier gliding across the snow at 3.0 m/s suddenly starts down a 10° incline, reaching a speed of 15 m/s at the bottom. Friction between the snow and her freshly waxed skis is negligible.a. What is the length of the incline?b. How long does it take her to reach the bottom?arrow_forwardpls illustrate the graph. I already have found the solution for this question but I need the graph ASAP!! A small asteroid strikes the surface of Mars andcauses a rock to fly upward with a velocity of 26 m/s[52deg above the horizontal]. The rock rises to amaximum height and then lands on the side of a hill12 m above its initial position. The acceleration due togravity on the surface of Mars is 3.7 m/s2/6 A full diagram must be shown in your solution(a) Calculate the maximum height of the rock.(b) Determine the time that the rock is in flight.(c) What is the range of the rock?arrow_forwardA nut comes loose from a bolt on the bottom of an elevator as the elevator is moving downthe shaft at 3.0 m/s. The nut strikes the bottom of the shaft in 2.0 s after it falls off. Treat the moment the nutleaves the boltas time zero. Treat air resistance as negligible. For consistency, use g = 9.81m/s2. 1.How far above the bottom of the shaft was the nut at 0.25 s after it fell off?2.How far from the bottom of the shaft was the elevator when the nut fell off?3.What is the speed of the nut when it strikes the bottom of the shaft? Graph position vs. time (yvs t), velocity vs. time, and acceleration vs. time for the nut. (Include axis labels, marked positions and times, etc.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY