Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4CQ
A projectile is launched at an angle of 30°.
a. Is there any point on the trajectory where and are parallel to each other? If so, where?
b. Is there any point where and are perpendicular to each other? If so, where?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rugby player attempts a kick after scoring a try. The ball was kicked at an angle of 60° with an initial resultant
velocity of 40 mi/h (ignoring air resistance).
a. What was the initial horizontal velocity in m/s?
b. What was the initial vertical velocity in m/s?
C. If the player was 40 m away from the goal, and the height of the horizontal bar was 3 m, did the player score?
Assume that the trajectory of the ball was on target.
35.0° above the ground.
a. How much time does it take for the ball to reach the goal posts?
b. How high is the ball when it reaches the goal posts? Does it clear the horizontal bar, which is 3.44m high off
You are walking around your neighborhood and you see a child on top of a roof of a building kick a soccer ball. The soccer ball is kicked
at 33° from the edge of the building with an initial velocity of 19 m/s and lands 55 meters away from the wall. How tall, in meters, is
the building that the child is standing on?
y
m
20
Chapter 4 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 4 - a. At this instant, is the particle in FIGURE Q4.1...Ch. 4 - a. At this instant, is the particle in FIGURE Q4.2...Ch. 4 - Tarzan swings through the jungle by hanging from a...Ch. 4 - A projectile is launched at an angle of 30°. a. Is...Ch. 4 - For a projectile, which of the following...Ch. 4 - A cart that is rolling at constant velocity on a...Ch. 4 - A rock is thrown from a bridge at an angle 30°...Ch. 4 - Anita is running to the right at 5 m/s in FIGURE...Ch. 4 - An electromagnet on the ceiling of an airplane...Ch. 4 - Zack is driving past his house in FIGURE Q4.1O. He...
Ch. 4 - II. In FIGURE Q4.11. Yvette and Zack are driving...Ch. 4 - In uniform circular motion, which of the following...Ch. 4 - FIGURE Q4.13 shows three points on a steadily...Ch. 4 - FIGURE Q4.14 shows four rotating wheels. For each,...Ch. 4 - FIGURE Q4.15 shows a pendulum at one end point of...Ch. 4 - Problems I and 2 show a partial motion diagram....Ch. 4 - Prob. 2EAPCh. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - Prob. 8EAPCh. 4 - A particle moving in the xy- plane has velocity v...Ch. 4 - You have a remote-controlled car that has been...Ch. 4 - A ball thrown horizontally at 25 m/s travels a...Ch. 4 - A physics student on the Planet Exidor throws a...Ch. 4 - A supply plane needs to drop a package of food to...Ch. 4 - A rifle is aimed horizontally at a target 50 m...Ch. 4 - In the Olympic shotput event, an athlete throws...Ch. 4 - On the Apollo 14 mission to the moon, astronaut...Ch. 4 - A baseball player friend of yours wants to...Ch. 4 - A boat takes 3.0 hours to travel 30 km down a...Ch. 4 - When the moving sidewalk at the airport is broken,...Ch. 4 - Prob. 20EAPCh. 4 - A kayaker, needs to paddle north across a...Ch. 4 - Susan, driving north at 60 mph, and Trent, driving...Ch. 4 - FIGURE EX4.23 shows the...Ch. 4 - FIGURE EX4.24 shows the...Ch. 4 - FIGURE EX4.25 shows the...Ch. 4 - The earth’s radius is about 4000 miles. Kampala,...Ch. 4 - An old-fashioned single-play vinyl record rotates...Ch. 4 - As the earth mates, what is the speed of (a) a...Ch. 4 - How fast must a plane fly along the earth’s...Ch. 4 - A 3000-rn-high mountain is located on the equator....Ch. 4 - Peregrine falcons are known for their maneuvering...Ch. 4 - To withstand “g-forces” of up to 10 g’s, caused by...Ch. 4 - The radius of the earth’s very nearly circular...Ch. 4 - A speck of dust on a spinning DVD has a...Ch. 4 - Your roommate is working on his bicycle and has...Ch. 4 - I FIGURE EX4.36 shows the angular velocity graph...Ch. 4 - I FIGURE EX4.37 shows the angular acceleration...Ch. 4 - FIGURE EX4.38 shows the...Ch. 4 - A wheel initially rotating at 60 rpm experiences...Ch. 4 - A 5.0-rn-diameter merry-go-round is initially...Ch. 4 - An electric fan goes from rest to 1800 rpm in 4.0...Ch. 4 - A bicycle wheel is rotating at 50 rpm when the...Ch. 4 - Starting from rest, a DVD steadily accelerates to...Ch. 4 - A spaceship maneuvering near Planet Zeta is...Ch. 4 - equation reference goes here45. A particle moving...Ch. 4 - A projectile’s horizontal range over level ground...Ch. 4 - a. A projectile is launched with speed v0and angle...Ch. 4 - A projectile is launched from ground level at...Ch. 4 - A gray kangaroo can bound across level ground with...Ch. 4 - A ball is thrown toward a cliff of height h with a...Ch. 4 - A tennis player hits a ball 2.0 m above the...Ch. 4 - You are target shooting using a toy gun that fires...Ch. 4 - A 35 g steel ball is held by a ceiling-mounted...Ch. 4 - You are watching an archery tournament when you...Ch. 4 - You’re 6.0 m from one wall of the house seen in...Ch. 4 - Sand moves without slipping at 6.0 m/s down a...Ch. 4 - A stunt man drives a car at a speed of 20 m/s off...Ch. 4 - A javelin thrower standing at rest holds the...Ch. 4 - A rubber ball is dropped onto a ramp that is...Ch. 4 - You are asked to consult for the city’s research...Ch. 4 - Ships A and B leave port together. For the next...Ch. 4 - While driving north at 25 m/s during a rainstorm...Ch. 4 - You’ve been assigned the task of using a shaft...Ch. 4 - Prob. 64EAPCh. 4 - Prob. 65EAPCh. 4 - Astronauts use a centrifuge to simulate the...Ch. 4 - Communications satellites are placed in a circular...Ch. 4 - Prob. 68EAPCh. 4 - A high-speed drill rotating ccw at 2400 rpm comes...Ch. 4 - A turbine is spinning at 3800 rpm. Frication in...Ch. 4 - Prob. 71EAPCh. 4 - The angular velocity of a process control motor is...Ch. 4 - A Ferris wheel of radius R speeds up with angular...Ch. 4 - Prob. 74EAPCh. 4 - A painted tooth on a spinning gear has angular...Ch. 4 - A car starts from rest on a curve with radius of...Ch. 4 - Prob. 77EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - Prob. 79EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - In one contest at the country fair, seen in FIGURE...Ch. 4 - Prob. 82EAPCh. 4 - Prob. 83EAPCh. 4 - Prob. 84EAPCh. 4 - Prob. 85EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle moves along a path, and its speed increases with time. (i) In which of the following cases are its acceleration and velocity vectors parallel? (a) when the path is circular. (b) when the path is straight. (c) when the path is a parabola. (d) never. (ii) From the same choices, in which case are its acceleration and velocity vectors perpendicular everywhere along the path?arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi = 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P4.13. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land? Figure P4.13arrow_forwardA World War II bomber flies horizontally over level terrain with a speed of 275 m/s relative to the ground and at an altitude of 3.00 km. The bombardier releases one bomb. (a) How far does the bomb travel horizontally between its release and its impact on the ground? Ignore the effects of air resistance. (b) The pilot maintains the planes original course, altitude, and speed through a storm of flak. Where is the plane when the bomb hits the ground? (c) The bomb hits the target seen in the telescopic bombsight at the moment of the bombs release. At what angle from the vertical was the bombsight set?arrow_forward
- A glider aircraft initially traveling due west at 85.0 km/h encounters a sudden gust of wind at 35.0 km/h directed toward the northeast (Fig. P3.62). What are the speed and direction of the glider relative to the ground during the wind gust? (The velocity of the glider with respect to the ground is the velocity of the gilder with respect to the wind plus the velocity of the wind with respect to the ground.)arrow_forwardA student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi= 18.0 m/s. The cliff is h = 50.0 m above a body of water as shown in Figure P3.19. (a) What are the coordinates of the initial position of the stone? (b) What are the components of the initial velocity of the stone? (c) What is the appropriate analysis model for the vertical motion of the stone? (d) What is the appropriate analysis model for the horizontal motion of the stone? (e) Write symbolic equations for the x and y components of the velocity of the stone as a function of time. (f) Write symbolic equations for the position of the stone as a function of time. (g) How long after being released does the stone strike the water below the cliff? (h) With what speed and angle of impact does the stone land?arrow_forwardA basketball player is standing on the floor 10.0 m from the basket as in Figure P4.60. The height of the basket is 3.05 m, and he shoots the ball at a 40.0 angle with the horizontal from a height of 2.00 m. (a) What is the acceleration of the basketball at the highest point in its trajectory? (b) At what speed must the player throw the basketball so that the ball goes through the hoop without striking the backboard?arrow_forward
- A person standing at the top of a hemispherical rock of radius R kicks a ball (initially at rest on the top of the rock) to give it horizontal velocity vi as shown in Figure P3.56. (a) What must be its minimum initial speed if the ball is never to hit the rock after it is kicked? (b) With this initial speed, how far from the base of the rock does the ball hit the ground?arrow_forwardA golfer hits his approach shot at an angle of 50.0, giving the ball an initial speed of 38.2 m/s (Fig. P4.60). The ball lands on the elevated green, 5.50 m above the initial position near the hole, and stops immediately. a. How much time passed while the ball was in the air? b. How far did the ball travel horizontally before landing? c. What was the peak height reached by the ball? FIGURE P4.60arrow_forwardA football player punts the ball at a 45.0° angle. Without an effect from the wind, the ball would travel 60.0 m horizontally. (a) What is the initial speed of the ball? (b) When the ball is near its maximum height it experiences a brief gust of wind that reduces its horizontal velocity by 1.50 m/s. What distance does the ball travel horizontally?arrow_forward
- A rifle is aimed horizontally at a target 53 mm away. The bullet hits the target 2.5 cmcm below the aim point. A. What was the bullet's flight time? Express your answer using two significant figures. B. What was the bullet's speed as it left the barrel? Express your answer using two significant figures.arrow_forwardA soccer goal is 2.44 m high. A player kicks the ball from a horizontal distance of 9.7 m from the goal, and the ball hits the crossbar at the top of the goal. The launch angle was 24.8 degrees above horizontal. a. What was the initial speed of the ball, in m/s.?arrow_forwarda. Vector 'a' has magnitude 5.0m and is directed east. T 2 Vector 'b' has magnitude 4.0m and is directed 350 west of north. What are (a) the magnitude and (b) the direction of 'a +b'? d. Is it possible for a body moving on a circular track to have zero acceleration? Explain vividly if Yes or No e. An electron moving along the x axis has a position given by is the electron from the origin when it momentarily stops? x = (16tet) m, where t is in seconds. How far Dizamarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY